Since a claim has been made that the general case is somehow beyond reach I decided to post it below. I am not going to present all the details of the computation because it took me half of a day to carry out it in Mathematica and I have not saved the intermediate steps. Yet let me assure you that I only used integration by parts and definitions of special functions. In some cases certain integrals were not reducible to known special functions so I just left those terms aside. Later it appeared that even those hard terms are all expressible through a generalized Owen's T function Generalized Owen's T function which is defined as a joint Gaussian probability in the following way:
\begin{equation}
T(h,a,b):= {\bf P}\left(X>h \quad \wedge \quad a X+b > Y > 0 \left. \right| X = N(0,1) , Y=N(0,1) \right)
\end{equation}
Back to our question. Clearly the expectation in question equals:
\begin{eqnarray}
&&{\mathbf E}\left[\mbox{max}(X,0)\mbox{max}(Y,0)\right]=
\int\limits_{-\frac{\mu_1}{s_1}}^\infty
\int\limits_{-\frac{\mu_2}{s_2}}^\infty
\left(\mu_1+s_1 \xi\right)\left(\mu_2+s_2 \eta\right) \cdot \rho(\xi,\eta) d\xi d\eta
\end{eqnarray}
where
\begin{equation}
\rho(\xi,\eta) := \frac{1}{2\pi \sqrt{1-\rho^2}} \exp\left[
-\frac{1}{2} \frac{1}{1-\rho^2}
\left( \xi^2+\eta^2 - 2 \rho \xi \eta\right)
\right]
\end{equation}
is the joint pdf of a bivariate Gaussian distribution with means zero and variances one.
Now the onle thing we need to do is to compute four two dimensional integrals being expectations of $1$,$\xi$,$\eta$ and of $\xi \cdot \eta$. Here I only state the result and then as usual verify it numerically. We have:
\begin{eqnarray}
{\mathbf E}\left[\mbox{max}(X,0)\mbox{max}(Y,0)\right]=
\mu_1 \mu_2 I_{0,0} + \mu_1 s_2 I_{0,1} + \mu_2 s_1 I_{1,0} + s_1 s_2 I_{1,1}
\end{eqnarray}
where
\begin{eqnarray}
&&I_{0,0}:=\int\limits_{-\frac{\mu_1}{s_1}}^\infty
\int\limits_{-\frac{\mu_2}{s_2}}^\infty 1 \cdot \rho(\xi,\eta) d\xi d\eta=\\
&&T\left(-\frac{\mu_2}{s_2},\frac{\rho }{\sqrt{1-\rho ^2}},\frac{\mu_1}{\sqrt{1-\rho ^2} s_1}\right)+\frac{1}{4} \left(\text{erf}\left(\frac{\mu_2}{\sqrt{2} s_2}\right)+1\right)\\
&&I_{0,1}:=\int\limits_{-\frac{\mu_1}{s_1}}^\infty
\int\limits_{-\frac{\mu_2}{s_2}}^\infty \eta \cdot \rho(\xi,\eta) d\xi d\eta=\\
&&\frac{e^{-\frac{\mu_2^2}{2 s_2^2}} \left(\text{erf}\left(\frac{\mu_1 s_2-\mu_2 \rho s_1}{\sqrt{2-2 \rho ^2} s_1 s_2}\right)+1\right)+\rho e^{-\frac{\mu_1^2}{2
s_1^2}} \text{erfc}\left(\frac{\mu_1 \rho s_2-\mu_2 s_1}{\sqrt{2-2 \rho ^2} s_1 s_2}\right)}{2 \sqrt{2 \pi }}\\
&&I_{1,0}:=\int\limits_{-\frac{\mu_1}{s_1}}^\infty
\int\limits_{-\frac{\mu_2}{s_2}}^\infty \xi \cdot \rho(\xi,\eta) d\xi d\eta=\\
&&\frac{e^{-\frac{\mu_1^2}{2 s_1^2}} \left(\text{erf}\left(\frac{\mu_2 s_1-\mu_1 \rho s_2}{\sqrt{2-2 \rho ^2} s_1 s_2}\right)+1\right)+\rho e^{-\frac{\mu_2^2}{2
s_2^2}} \text{erfc}\left(\frac{\mu_2 \rho s_1-\mu_1 s_2}{\sqrt{2-2 \rho ^2} s_1 s_2}\right)}{2 \sqrt{2 \pi }}\\
&&I_{1,1}:=\int\limits_{-\frac{\mu_1}{s_1}}^\infty
\int\limits_{-\frac{\mu_2}{s_2}}^\infty \xi \eta \cdot \rho(\xi,\eta) d\xi d\eta=\\
&&-\rho \cdot T\left(-\frac{\mu_2}{s_2},-\frac{\rho }{\sqrt{1-\rho ^2}},-\frac{\mu_1}{\sqrt{1-\rho ^2} s_1}\right)-\frac{\mu_1 \rho e^{-\frac{\mu_1^2}{2 s_1^2}}
\left(\text{erf}\left(\frac{\mu_2 s_1-\mu_1 \rho s_2}{\sqrt{2-2 \rho ^2} s_1 s_2}\right)+1\right)}{2 \sqrt{2 \pi } s_1}+\frac{1}{4} \rho
\left(\text{erf}\left(\frac{\mu_2}{\sqrt{2} s_2}\right)+1\right)-\frac{\mu_2 \rho e^{-\frac{\mu_2^2}{2 s_2^2}} \text{erfc}\left(\frac{\mu_2 \rho s_1-\mu_1 s_2}{\sqrt{2-2
\rho ^2} s_1 s_2}\right)}{2 \sqrt{2 \pi } s_2}+\frac{\sqrt{1-\rho ^2} \exp \left(\frac{\mu_1^2 s_2^2-2 \mu_1 \mu_2 \rho s_1 s_2+\mu_2^2 s_1^2}{2 \left(\rho
^2-1\right) s_1^2 s_2^2}\right)}{2 \pi }
\end{eqnarray}
rho =.; mu1 =.; mu2 =.; s1 =.; s2 =.;
myrho[x_, y_] :=
1/(2 Pi Sqrt[1 - rho^2]) Exp[-1/
2 1/(1 - rho^2) (x^2 + y^2 - 2 rho x y)];
T[h_, a_, b_] :=
NIntegrate[(E^(-(b^2/2) - xi b h - 1/2 (1 + xi^2) h^2)) /(
2 (1 + xi^2) \[Pi]) -
b /(2 Sqrt[2] Sqrt[ \[Pi]]) (
xi Erfc[(h + xi (b + xi h))/(Sqrt[2] Sqrt[1 + xi^2])])/ ((1 +
xi^2)^(3/2)) E^(-(b^2/(2 + 2 xi^2))), {xi, 0, a},
WorkingPrecision -> 20] + Erfc[h/Sqrt[2]] Erf[b/Sqrt[2]] 1/4;
{mu1, mu2, s1, s2} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
rho = RandomReal[{0, Sqrt[s1 s2]}, WorkingPrecision -> 50];
l1 = NIntegrate[{1, y, x, x y} myrho[x, y], {x, -mu1/s1,
Infinity}, {y, -mu2/s2, Infinity}];
l2 = {1/4 (1 + Erf[mu2/(Sqrt[2] s2)]) +
T[-(mu2/s2), rho/Sqrt[1 - rho^2], mu1/(Sqrt[1 - rho^2] s1)],
1/(2 Sqrt[
2 \[Pi]]) (E^(-(mu2^2/(
2 s2^2))) (1 +
Erf[(-mu2 rho s1 + mu1 s2)/(Sqrt[2 - 2 rho^2] s1 s2)]) +
E^(-(mu1^2/(2 s1^2)))
rho Erfc[ (-mu2 s1 + mu1 rho s2)/(Sqrt[2 - 2 rho^2] s1 s2)]),
1/(2 Sqrt[
2 \[Pi]]) (E^(-(mu1^2/(
2 s1^2))) (1 +
Erf[(-mu1 rho s2 + mu2 s1)/(Sqrt[2 - 2 rho^2] s1 s2)]) +
E^(-(mu2^2/(2 s2^2)))
rho Erfc[ (-mu1 s2 + mu2 rho s1)/(Sqrt[2 - 2 rho^2] s1 s2)]),
Sqrt[1 - rho^2]/(2 \[Pi]) E^((
mu2^2 s1^2 - 2 mu1 mu2 rho s1 s2 + mu1^2 s2^2)/(
2 (-1 + rho^2) s1^2 s2^2)) +
1/4 rho (1 + Erf[mu2/(Sqrt[2] s2)]) - ( mu1 rho)/(
2 Sqrt[2 \[Pi]]
s1) (1 +
Erf[(mu2 s1 - mu1 rho s2)/(Sqrt[2 - 2 rho^2] s1 s2)]) E^(-(
mu1^2/(2 s1^2))) - ( mu2 rho )/(2 Sqrt[2 \[Pi]] s2)
Erfc[(mu2 rho s1 - mu1 s2)/(Sqrt[2 - 2 rho^2] s1 s2)] E^(-(
mu2^2/(2 s2^2))) -
rho T[-(mu2/s2), -(rho/Sqrt[1 - rho^2]), -(mu1/(
Sqrt[1 - rho^2] s1))]};
MatrixForm[{l1, l2}]

It would be nice to do some additional sanity checks like finding some limiting cases. I will attempt to do it asap.
Update: Let us check the case $\mu_1=\mu_2=0$. In here we have:
\begin{eqnarray}
{\mathbf E}\left[\mbox{max}(X,0)\mbox{max}(Y,0)\right] &=& s_1 s_2 I_{1,1}\\
&=&s_1 s_2 \left( -\rho \cdot T\left(0,-\frac{\rho}{\sqrt{1-\rho^2}},0\right) + \frac{\rho}{4} + \frac{\sqrt{1-\rho^2}}{2\pi}\right)\\
&=& s_1 s_2 \left(
\frac{\rho}{2\pi} \mbox{arctan}(\frac{\rho}{\sqrt{1-\rho^2}}) +
\frac{\rho}{4} + \frac{\sqrt{1-\rho^2}}{2\pi}\right)
\end{eqnarray}
as it should be.