Problem
Diagonalize the matrix
$$
\mathbf{A} =
\left[
\begin{array}{cc}
2 & 3 \\
3 & 4 \\
\end{array}
\right]
$$
Solution
Compute eigenvalues
The eigenvalues are the roots of the characteristic polynomial
$$
p(\lambda) = \lambda^{2} - \lambda \text{ trace }\mathbf{A} + \det \mathbf{A}
$$
The trace and determinant are
$$
\text{ trace }\mathbf{A} = 6, \qquad \det \mathbf{A} = -1
$$
Therefore
$$
p(\lambda)
= \lambda^{2} - \lambda \text{ trace }\mathbf{A} + \det \mathbf{A}
= \lambda^{2} - 6 \lambda - 1
$$
The roots are the eigenvalue spectrum
$$
\lambda \left( \mathbf{A} \right) = 3 \pm \sqrt{10}
$$
Result:
$$
\mathbf{D} = \left[
\begin{array}{cc}
3+\sqrt{10} & 0 \\
0 & 3-\sqrt{10} \\
\end{array}
\right]
$$
Eigenvectors
First
$$
\begin{align}
\left(\mathbf{A} - \lambda_{1} \mathbf{I}_{2} \right) w_{1} &= \mathbf{0} \\
%
\left[
\begin{array}{cc}
-1-\sqrt{10}-1 & 3 \\
3 & 1-\sqrt{10} \\
\end{array}
\right]
%
\left[
\begin{array}{c}
w_{x} \\
w_{y} \\
\end{array}
\right]
%
&=
%
\left[
\begin{array}{c}
0 \\
0 \\
\end{array}
\right]
%
\end{align}
$$
Solution
$$
w_{1} =
\left[
\begin{array}{c}
\frac{1}{3} \left(-1+\sqrt{10}\right) \\
1 \\
\end{array}
\right]
$$
Second
$$
\begin{align}
\left(\mathbf{A} - \lambda_{2} \mathbf{I}_{2} \right) w_{2} &= \mathbf{0} \\
%
\left[
\begin{array}{cc}
-1+\sqrt{10} & 3 \\
3 & 1+\sqrt{10} \\
\end{array}
\right]
%
\left[
\begin{array}{c}
w_{x} \\
w_{y} \\
\end{array}
\right]
%
&=
%
\left[
\begin{array}{c}
0 \\
0 \\
\end{array}
\right]
%
\end{align}
$$
Solution
$$
w_{2} =
\left[
\begin{array}{c}
-\frac{1}{3} \left(1+\sqrt{10}\right) \\
1 \\
\end{array}
\right]
$$
Diagonalization matrix
$$
\mathbf{P} =
\left[
\begin{array}{cc}
\frac{1}{3} \left(-1+\sqrt{10}\right) & -\frac{1}{3} \left(1+\sqrt{10} \right) \\
1 & 1 \\
\end{array}
\right],
\qquad
\mathbf{P}^{-1} =
\frac{1}{2\sqrt{10}}
\left[
\begin{array}{rr}
3 & 1+\sqrt{10} \\
-3 & -1+\sqrt{10} \\
\end{array}
\right]
$$
Validation
You can check that
$$
\mathbf{P} \mathbf{A} \mathbf{P}^{-1} = \mathbf{D}
$$
and
$$
\mathbf{P}^{-1} \mathbf{D} \mathbf{P} = \mathbf{A}
$$
Gaussian elimination
Solving this problem does not require Gaussian elimination. However, since you specifically asked, here is the process:
Clear column 1
$$
\left[
\begin{array}{rc}
\frac{1}{2} & 0 \\
-\frac{3}{2} & 1 \\
\end{array}
\right]
%
\left[
\begin{array}{cc|cc}
2 & 3 & 1 & 0 \\
3 & 4 & 0 & 1 \\
\end{array}
\right]
=
\left[
\begin{array}{cr|rc}
1 & \frac{3}{2} & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} & -\frac{3}{2} & 1 \\
\end{array}
\right]
$$
Clear column 2
$$
\left[
\begin{array}{cr}
1 & 3 \\
0 & -2 \\
\end{array}
\right]
%
\left[
\begin{array}{cr|rc}
1 & \frac{3}{2} & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} & -\frac{3}{2} & 1 \\
\end{array}
\right]
=
\left[
\begin{array}{cc|rr}
1 & 0 & -4 & 3 \\
0 & 1 & 3 & -2 \\
\end{array}
\right]
$$