I know that :
$$\ln: (0,+\infty )\to \mathbb{R}$$ $$\ln(x):=\int_1^x \dfrac{dt}{t}$$
And :
$$\ln^{-1}: \mathbb{R} \to \mathbb{R}^+$$ $$\ln^{-1}(x):=\exp(x)$$
after that. We define :
$$f: \mathbb{R} \to \mathbb{R}^+$$ $$f(x):=\big(\exp(\ln a)\big)^x \ \ \ a >0 ,a \neq 1$$
And :
$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}$$ $$f^{-1}(x):=\log_a (x) \ \ \ a >0 ,a \neq 1$$
now my question : function $\dfrac{1}{t}$ How did they get?