Cauchy D'Alembert's Law If $a_n$ is a sequence of real numbers and if $\lim\limits_{n \to \infty} \frac{a_{n+1}}{a_n} =l$ the $\lim\limits_{n \to \infty} \sqrt[n]{a_n}=l$
$\left(\frac{n^n}{n!}\right)^{\frac{x}{n}}=e^x$ This can be proved via Cauchy D'Alembert's Law.
Now Lets return to the big fraction i.e $\lim\limits_{n\to\infty}\left(\prod\limits_{k=1}^n\frac{x+\frac{n}{k}}{x^2+\frac{n^2}{k^2}}\right)^{\frac{x}{n}}$, Let $a_n(x)= \prod\limits_{k=1}^n\frac{x+\frac{n}{k}}{x^2+\frac{n^2}{k^2}}$. to make the notations less messier I will write $a_n$ instead of $a_n(x)$.
$$b_n:=\frac{a_{n+1}}{a_n}=\frac{x+1}{x^2+1}\prod\limits_{k=1}^n \left[ \frac{\left(x+ \frac{n+1}{k}\right)\left(x^2+\frac{n^2}{k^2}\right) }{\left(x+\frac{n}{k}\right)\left(x^2+ \frac{(n+1)^2}{k^2}\right)}\right]$$
$$=\frac{x+1}{x^2+1}\prod\limits_{k=1}^n \left[1+\frac{1}{kx+n} \right]\left[1+\frac{2n+1}{k^2x^2 +n^2} \right]^{-1}$$
Let $c_n =\prod\limits_{k=1}^n \left[1+\frac{1}{kx+n} \right]$ , $d_n=\prod\limits_{k=1}^n \left[1+\frac{2n+1}{k^2x^2 +n^2} \right] $ so $b_n= \frac{x+1}{x^2+1} \cdot \frac{c_n}{d_n} $.
$$\ln(1+x) = \sum_{m=1}^ \infty \frac{(-1)^{m+1} x^m}{ m} \ \ \ \ \text{ with radius of convergence = 1 }$$
For all $n>3$
$$\ln(c_n ) = \sum\limits_{k=1}^n \ln\left[1+\frac{1}{kx+n} \right]=\sum\limits_{k=1}^n \sum_{m=1}^ \infty \frac{(-1)^{m+1} }{ m (kx+n)^m}
$$
$$= \sum\limits_{k=1}^n\frac{1}{kx+n} +\sum\limits_{k=1}^n \sum_{m=2}^ \infty \frac{(-1)^{m+1} }{ m (kx+n)^m}
$$
Note that $\left|\sum\limits_{k=1}^n \sum\limits_{m=2}^ \infty \frac{(-1)^{m+1} }{ m (kx+n)^m} \right|< \sum\limits_{m=1}^ \infty \frac{1}{n^m}= \frac{1}{n-1} $
So $\displaystyle \sum_{k=1}^n\left[\frac{1}{kx+n}\right] -\frac{1}{n-1}<\ln(c_n)<\sum_{k=1}^n\left[\frac{1}{kx+n}\right]+\frac{1}{n-1}$ by squeeze theorem $\displaystyle \lim_{n \to \infty}\ln(c_n)= \lim_{n \to \infty} \sum\limits_{k=1}^n\frac{1}{kx+n} $
$$ \lim_{n \to \infty} \sum\limits_{k=1}^n\frac{1}{kx+n} = \lim_{n \to \infty}\frac{1}{n} \sum\limits_{k=1}^n\frac{1}{x\frac{k}{n}+1} = \int_0^1 \frac{1}{1+xt}dt =\frac{\ln(1+x)}{x}$$
so $\displaystyle \lim_{n \to \infty} c_n = (x+1)^{\frac{1}{x}}$
finding $d_n$ is analogous to $c_n$:
$$ \lim_{n \to \infty} d_n = \lim_{n \to \infty} \sum_{k=1}^n \frac{2n}{k^2x^2+n^2}=\lim_{n \to \infty}=\frac{2}{n}\sum_{k=1}^n \frac{1}{\frac{k^2}{n^2}x^2+1}= \int_0^1 \frac{1}{x^2t^2+1}dt = \frac{2\arctan(x)}{x}$$
so $d_n= \exp\left(\frac{2\arctan(x)}{x}\right)$
Since $b_n= \frac{x+1}{x^2+1} \cdot \frac{c_n}{d_n} $ then $$\lim\limits_{n \to \infty} b_n = \frac{x+1}{x^2+1} \cdot \frac{(x+1)^{\frac{1}{x}}}{\exp\left(\frac{2\arctan(x)}{x}\right)}$$
By Cauchy D'Alembert's Law $\lim\limits_{n \to \infty} \sqrt[n]{a_n(x)} = \frac{x+1}{x^2+1} \cdot \frac{(x+1)^{\frac{1}{x}}}{\exp\left(\frac{2\arctan(x)}{x}\right)}$
$$f(x)=e^x\lim_{n \to \infty}a_n^{x/n}= e^x \cdot \left(\frac{x+1}{x^2+1}\right)^x \frac{(x+1)}{e^{2\arctan(x)}} $$