$\displaystyle f(x)=\lim \limits_{n\rightarrow \infty} \left(\frac{n^n(x+n)(x+n/2)...(x+n/n)}{n!(x^2+n^2)(x^2+n^2/4)...(x^2+n^2/n^2)}\right)^{x/n}$, find $f(1/3)$
$f(x)=\displaystyle \left({\frac{\prod \limits_{r=1}^n (1+xr/n)}{\prod \limits_{r=1}^n (1+(xr/n)^2)}}\right)^{x/n}=e^{x/n \ln{\frac{\prod \limits_{r=1}^n (1+xr/n)}{\prod \limits_{r=1}^n (1+(xr/n)^2)}}}$
We can differentiate but in the exam we're expected to do this within $10$ minutes, there must be another shorter method to simplify this