0

We all know that $\sum_{n=1}^{\infty}\frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. If $M$ is a positive integer, how can we show that $$\sum_{n=M}^{\infty}\frac{1}{n^{2}}=O(\frac{1}{M})$$

John
  • 1

1 Answers1

4

$$\sum_{n=M}^{\infty} \dfrac1{n^2}< \int_{M-1}^{\infty} \dfrac{dx}{x^2} = -\left . \dfrac1x \right \vert_{M-1}^{\infty} = \dfrac1{M-1} = \mathcal{O} \left(\dfrac1M\right)$$