Let $I$ be given by the integral
$$I=\int_0^\infty \frac{\log(e^x-1)}{e^x+1}\,dx \tag 1$$
Enforcing the substitution $x\to -\log(x)$ in $(1)$ we find
$$\begin{align}
I&=\int_0^1 \frac{\log(1-x)-\log(x)}{1+x}\,dx\\\\
&=\int_0^1 \frac{\log(1-x)}{1+x}\,dx-\int_0^1 \frac{\log(x)}{1+x}\,dx\tag2
\end{align}$$
We enforce the substitution $x\to 2x-1$ in the first integral on the right-hand side of $(2)$ to reveal
$$\begin{align}
\int_0^1 \frac{\log(1-x)}{1+x}\,dx&=\int_{1/2}^1 \frac{\log(2)+\log(1-x)}{x}\,dx\\\\
&=\log^2(2)-\text{Li}_2(1)+\text{Li}_2(1/2)\\\\
&=\log^2(2)-\frac{\pi^2}{6}+\frac{\pi^2}{12}-\frac12\log^2(2)\\\\
&=\frac12\log^2(2)-\frac{\pi^2}{12}\tag 3
\end{align}$$
We integrate by parts the second integral on the right-hand side of $(2)$ with $u=\log(x)$ and $v=\log(1+x)$ to reveal
$$\int_0^1 \frac{\log(x)}{1+x}\,dx=-\int_0^1 \frac{\log(1+x)}{x}\,dx\tag 4$$
Then letting $x\to -1$ in $(4)$, we find
$$\begin{align}
\int_0^1 \frac{\log(x)}{1+x}\,dx&=-\int_0^{-1} \frac{\log(1-x)}{x}\,dx\\\\
&=\text{Li}_2(-1)\\\\
&=-\frac{\pi^2}{12}\tag 5
\end{align}$$
Finally, substituting $(3)$ and $(5)$ into $(2)$ yields the coveted result
$$\bbox[5px,border:2px solid #C0A000]{I=\frac12\log^2(2)}$$