Theorem. $$ \sum_{k = 1}^n k^3 = \frac{n^2(n+1)^2}{4} $$
Proof: (by Induction). Let $P_n$ be the proposition:
$$P_n: \qquad \sum_{k = 1}^n k^3 = \frac{n^2(n+1)^2}{4} $$
Base Case:
$$ \sum_{k = 1}^1 k^3 = 1^3 = 1 $$
$$ \frac{1^2(1+1)^2}{4} = \frac{1\cdot4}{4} = 1 $$
Therefore $P_1$ holds.
Inductive Step: Assume, for the sake of induction, $P_m$, for some arbitrary $m$. Then:
\begin{align*}
\sum_{k = 1}^m k^3 &= \frac{m^2(m+1)^2}{4} \\
\sum_{k = 1}^m k^3 + (m+1)^3 &= \frac{m^2(m+1)^2}{4} + (m+1)^3 \\
\sum_{k = 1}^{m+1} k^3 &= (m+1)^2 \left[ \frac{m^2}{4} + (m+1) \right] \\
&= (m+1)^2 \cdot \frac{m^2 + 4m + 4}{4} \\
&= \frac{(m+1)^2(m+2)^2}{4} \\
\end{align*}
Therefore, $P_m \implies P_{m+1}$.
Conclusion: We have shown:
$$ P_1 \wedge (P_m \implies P_{m+1})$$
By mathematical induction, we have that $P_n$ holds for all $n \in \mathbb{N}$.