Let $m \in \mathbb{R}$ and $n \in \mathbb{N}$. Prove the following facts:
$\lfloor \hspace2mm\rfloor$ Means Floor function: And $\lfloor \lfloor m\rfloor/n\rfloor$ mean the floor of $m$ and then the floor of the floor $m$ divides $n$.
(i) $\lfloor m+n \rfloor = \lfloor m \rfloor+n$
(ii) $\lfloor \lfloor m \rfloor / n \rfloor = \lfloor m/n \rfloor$
(iii) $\lfloor m \rfloor + \lfloor m + 1/n \rfloor + \lfloor m + 2/n \rfloor + \ldots + \lfloor m + (n-1)/n \rfloor = \lfloor m n \rfloor$ (induction?)
Lemma: for $x = nθ$, where $θ = m−\lfloor m \rfloor$.