This is easy using the universal property of the floor function, i.e. if $\ x\in \Bbb R\ $ then
$$\rm k\,\le\, \lfloor x \rfloor \color{#c00}\,\color{#c00}\iff\, k\,\le\, x,\ \ \ for\ \ all\ \ k\in \mathbb Z\qquad\quad\ $$
$${{\rm\begin{eqnarray}
\text{so for }\rm\:n\in \mathbb Z,\,\ x\in \mathbb R, &\rm \quad k &\le&\ \rm\ \color{#0a0}{\lfloor x+n\rfloor} \\
\color{#c00}\iff& \quad\rm k &\le&\ \ \ \ \rm x+n \\
\iff&\quad \rm k-n\,\ &\le&\ \ \rm\ \ x \\
\color{#c00}\iff&\quad \rm k-n\,\ &\le&\ \rm\ \lfloor x\rfloor \\
\color{}\iff&\quad \rm k &\le&\ \rm\ \lfloor x\rfloor+n \\
\color{#c00}\iff&\quad \rm k &\le&\ \rm\ \color{#90f}{\lfloor \lfloor x\rfloor+n\rfloor} \\
\end{eqnarray}}}\qquad\qquad\qquad\ $$
$$\ \ \ \text{thus } \ \ \ \color{#0a0}{\rm \lfloor x+n\rfloor} = \rm\ \color{#90f}{\lfloor\lfloor x\rfloor+n\rfloor} $$
Remark $\ $ See this answer for another example and further discussion.
And here is another example from this deleted question: Prove that if $m$ and $n$ are positive integers, and $x$ is a real number, then: $$\left\lfloor\frac{\lfloor x\rfloor+n}m\right\rfloor = \left\lfloor\frac{x+n}m\right\rfloor$$
This is straightforward using the universal property of the floor function, viz.
$$\rm k\le \lfloor r \rfloor \color{#c00}\iff k\le r,\ \ \ for\ \ \ k\in \mathbb Z,\ r\in \mathbb R$$
Thus for $\rm\ k,m,n\in \mathbb Z,\,\ m>0,\,\ x\in \mathbb R,\ $
$$\rm\,\begin{array}{rrrl}
&\rm k &\le&\!\rm\ \color{#0a0}{\lfloor (\lfloor x\rfloor + n)/m\rfloor} \\
\color{#c00}\iff& \rm k &\le&\ \ \rm (\lfloor x\rfloor + n)/m \\
\iff& \rm mk &\le&\ \ \ \rm \lfloor x\rfloor + n \\
\iff& \rm mk-n &\le&\ \ \rm\ \lfloor x\rfloor \\
\color{#c00}\iff& \rm mk-n &\le&\ \ \rm\ \ \, x \\
\iff& \rm mk &\le&\quad\,\rm x + n \\
\iff& \rm k &\le&\ \ \ \rm (x + n)/m \\
\color{#c00}\iff& \rm k &\le&\ \ \rm\color{blue}{\lfloor (x + n)/m\rfloor} \\
\end{array}$$
So, by the above, we conclude that $\, \rm \color{#0a0}{\lfloor (\lfloor x\rfloor + n)/m\rfloor}\ =\rm\ \ \color{blue}{\lfloor (x + n)/m\rfloor} $