Log integral
$$\int_{0}^{\infty}{\ln[x(1+x)]\ln\left(x\over 1+x\right)\over (x+2)^2}\mathrm dx={1\over 2}\ln^2(2)\tag1$$
Making an attempt:
Following from my previous post making $u={x\over 1+x}$ it doesn't worked, so I try applying binomial series
$(1)$ becomes
$$\sum_{n=0}^{\infty}(-1)^n\cdot{n+1\over 2^n}\int_{0}^{\infty}[x^n\ln^2(x)-x^n\ln^2(1+x)]\mathrm dx=2\ln^2(2)\tag2$$
Applying IBP to these indefinite integrals
$$\int x^n\ln^2(x)\mathrm dx={x^{n+1}\over n+1}\cdot \ln^2(x)-x^2\cdot{2\ln x-1\over 2(n+1)}+C\tag3$$
$$\int x^n\ln^2(1+x)\mathrm dx={x^{n+1}\over n+1}\cdot \ln^2(1+x)-{2\over n+1}\int\color{red}{{x^{n+1}\over 1+x}\ln(1+x)\mathrm dx}\tag4$$
$$\color{red}{\int{x^{n+1}\over 1+x}\ln(1+x)}\mathrm dx={x^{n+1}\over 2}\ln^2(1+x)-{n+1\over 2}\int x^n\ln^2(1+x)\mathrm dx\tag5$$
If I put $(5)$ into $(4)$ we get zero! What I am doing here doesn't seem to be working.
How can we go about to tackle $(1)?$