Two well known constants
$$\int_{0}^{\infty}{\ln x\ln\left(x\over 1+x\right)\over (1+x)^2}=\zeta(2)\tag1$$
$$\int_{0}^{\infty}{\ln x\ln\left(x\over 1+x\right)\over 1+x}=\zeta(3)\tag2$$
An attempt:
Applying IBP: $$\int{\ln x\over x}\mathrm dx={1\over 2}\ln^2 x+C\tag3$$
Rewrite $(2)$ as
$$\int{\ln^2 x\over 1+x}\mathrm dx-\int{\ln(x)\ln(1+x)\over 1+x}\mathrm dx=I_1-I_2\tag4$$
Let integrate $I_1$, applying IBP
$$I_1=\ln^2(x)\ln(1+x)-2\int{\ln(x)\ln(1+x)\over x}\mathrm dx\tag5$$
$$I_1=-\ln^2(x)\ln(1+x)+2\ln(x)\ln(1+x)-2\int{\ln(x)\ln(1+x)\over x}\mathrm dx\tag6$$
$I_1$ is not going down any further.
Let try $I_2$ applying IBP
$$I_2={1\over 2}\ln(x)\ln(1+x)+{1\over 2}\int{\ln^2(x)\over x}\mathrm dx\tag7$$
$$\int{\ln^2(x)\over x}\mathrm dx={1\over 3}\ln^3(x)+C\tag8$$
$$I_2={1\over 2}\ln(x)\ln(1+x)+{1\over 6}\ln^3(x)+C\tag9$$
This seem too complicate, what I am doing here
How can we tackle $(1)$ and $(2)$ in a less cumbersome way?