We have $\enspace\displaystyle\sum\limits_{k=1}^\infty\frac{e^{i2\pi xk}}{k}=-\ln(1-e^{i2\pi x})\enspace$ for $\enspace 0<x<1\enspace$ .
Hint: $\enspace\displaystyle\sum\limits_{k=1}^\infty \frac{(re^{i2\pi x})^k}{k}=-\ln(1-re^{i2\pi x})\enspace$ for $|r|<1\enspace$ and
$\hspace{1cm}\enspace\displaystyle -\ln(1-re^{i2\pi x})\to -\ln(1-e^{i2\pi x})$ for $r\to 1^-$ if $0<x<1$
$\hspace{1cm}$
$\enspace\displaystyle -\ln(1-e^{i2\pi x})=-\ln(1-e^{i2\pi (x+n)})= -\ln(e^{i\pi (x-\frac{1}{2}+n)}2\sin(\pi x))$
$\hspace{3cm}\enspace\displaystyle = -i\pi (x-\frac{1}{2}+n)-\ln(2\sin(\pi x))\enspace$ with $\enspace n\in\mathbb{Z}$
With $\enspace\displaystyle x=\frac{1}{2}\enspace$ follows $\enspace n=0$ .
With $\enspace\displaystyle x=\frac{1}{2\pi}\enspace$ one gets $\enspace\displaystyle\sum\limits_{k=1}^\infty\frac{e^{ik}}{k}=-i\pi (\frac{1}{2\pi}-\frac{1}{2})-\ln(2\sin(\frac{1}{2}))$
and therefore $\enspace\displaystyle \sum\limits_{k=1}^\infty\frac{\sin(k)}{k}=\frac{\pi-1}{2}$ .
Note: I found Stewart's Calculus book under the link https://assassinezmoi.files.wordpress.com/2012/03/calculus-6th-edition-james-stewart.pdf .
Use Fourier to get the result which I have written. Then you can show, that your series is convergent.
Obviously the hint above (one can see e.g. the literature) is not enough.
Therefore a bit more text.
First: The logarithm is a continuous function.
Second: Be $\enspace\displaystyle 0<x_0<x\leq\frac{1}{2}\enspace$ or $\enspace\displaystyle \frac{1}{2}\leq x<x_0<1$ . Then we have $\enspace\displaystyle |e^{i2\pi x}-1|>|e^{i2\pi x_0}-1|$ .
It follows $\enspace\displaystyle |\lim\limits_{r\to 1^-}\sum\limits_{k=1}^n \frac{1-r^k}{1-r}\frac{e^{-i2\pi x k}}{k}|=|\frac{1-e^{-i2\pi x n}}{e^{i2\pi x}-1}|\leq |\frac{2}{e^{i2\pi x_0}-1}|\enspace$ and this inequality is independend of $n$ .
We get
$\displaystyle |\sum\limits_{k=1}^\infty \frac{e^{-i2\pi x k}}{k}-\lim\limits_{r\to 1^-}\sum\limits_{k=1}^\infty \frac{r^k e^{-i2\pi x k}}{k}|=|\lim\limits_{r\to 1^-}(1-r)\sum\limits_{k=1}^\infty \frac{1-r^k}{1-r}\frac{e^{-i2\pi x k}}{k}|$
$\hspace{7cm}\displaystyle \leq |\frac{2}{e^{i2\pi x_0}-1}|\lim\limits_{r\to 1^-}(1-r)=0$
and therefore with $\enspace 0<x<1$
$\displaystyle \sum\limits_{k=1}^\infty \frac{e^{-i2\pi x k}}{k}=\lim\limits_{r\to 1^-} -\ln(1-re^{-i2\pi x})=-\ln(1-e^{-i2\pi x})$ .
With the conjugated complex series we get what I had written in the first line.