How to use the comparison test to prove that$$ \sum_0^\infty\arccos \left ( \frac{1}{\sqrt{1+\frac{1}{2x}}}\right)?$$was an divergent series
-
Did you mean to start your series at $x=0$? – Simply Beautiful Art Mar 04 '17 at 16:09
3 Answers
HINT:
Let $\arccos \left ( \dfrac{1}{\sqrt{1+\dfrac{1}{2x}}}\right)=y$
$\implies1+\dfrac{1}{2x}=\sec^2y\iff\cot^2y=2x\implies y=\arctan\dfrac1{\sqrt{2x}}$ as $x\not<0$
Now $$\lim_{x\to\infty}\dfrac{\arctan\dfrac1{\sqrt{2x}}}{\dfrac1{\sqrt{2x}}}=?$$

- 274,582
-
-
@Mclalalala, http://math.stackexchange.com/questions/101131/p-series-convergence – lab bhattacharjee Mar 04 '17 at 16:15
In THIS ANSWER I showed, using standard inequalities from elementary geometry only, that the arccosine function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{\sqrt{1-t^2}\le \arccos(t)\le \frac{\sqrt{1-t^2}}{t}} \tag 1$$
for $0<t\le 1$.
Using $(1)$ with $t=\sqrt{\frac{2x}{1+2x}}$ we find that
$$\arccos\left(\sqrt{\frac{2x}{1+2x}}\right)\ge \sqrt{\frac{1}{1+2x}}$$
Inasmuch as the series $\sum_{x=1}^\infty\frac{1}{\sqrt{1+2x}}$ diverges, then by comparison the series of interest diverges also.

- 179,405
-
Please let me know how I can improve my answer. I really want to give you the best answer I can. -Mark – Mark Viola Mar 06 '17 at 05:08
Through Taylor expansions, we know that
$$\arccos(x)\ge\sqrt{2(1-x)}$$
Thus, we may use the comparison test:
$$\sum_{n=1}^\infty\sqrt{2\left(1-\frac1{\sqrt{1+\frac1{2n}}}\right)}$$
And by binomial expansion and limit comparison test:
$$\sqrt{1+\frac1{2n}}=1+\frac1{\sqrt{8n}}+\mathcal O(n^{-1})$$
$$1-\frac1{1+\frac1{\sqrt{8n}}+\mathcal O(n^{-1})}=\frac1{\sqrt{8n}}+\mathcal O(n^{-1})$$
$$\sqrt{\frac1{\sqrt{8n}}+\mathcal O(n^{-1})}=\frac1{\sqrt[4]{8n}}+\mathcal O(n^{-1})$$
And we can see divergence from the p-series.

- 74,685