First of all, we can expand $\prod_{i=1}^n(x-\xi_i)$ to get $$\prod_{i=1}^n(x-\xi_i) = x^n + x^{n-1}\sum_{i=1}^n(-\xi_i) + x^{n-2}\sum_{i=1}^n\sum_{j=1}^n(-\xi_i)(-\xi_j) + \cdots + x^0\prod_{k=1}^n(-\xi_k) = x^n-1$$
Two $n$-th polynomial of $x$ equal means each corresponding coefficient equal. This gives us a series of relations:
$$\sum_{i=1}^n\xi_i = 0$$
$$\sum_{i=1}^n\sum_{j=1}^n\xi_i\xi_j = 0$$
$$\cdots$$
$$\prod_{k=1}^n(-\xi_k) = -1$$
The last relation leads to $\prod_{k=1}^n\xi_k^{-1} = (-1)^{n-1}$.
Now let's look at the term $\prod_{j \neq i}^n(\xi_i-\xi_j)$. WOLG, we can let $i = 1$. $$\prod_{j=2}^n(\xi_1-\xi_j) = \xi_1^{n-1}+\xi_1^{n-2}\sum_{j=2}^n(-\xi_j) + \xi_1^{n-3}\sum_{j=2}^n\sum_{k=2}^n(-\xi_j)(-\xi_k)+\cdots+\xi_1^0\prod_{j=2}^n(-\xi_j)$$ Using the relation we found before, we can see each term equals to $\xi_1^{n-1}$, and there $n$ terms. Thus $$\prod_{j=2}^n(\xi_1-\xi_j) = n\xi_1^{n-1}$$