If I understand you correctly, here's a proof that every eigenvalue of AB is an eigenvalue of BA: (only if m=n)
Let $A,B$ be 2 matrix. Then, if $\lambda = 0$ :
$|AB| = 0 \rightarrow |A||B| = 0 \rightarrow |B||A| = 0 \rightarrow |BA|=0 \rightarrow 0$ is eigenvalue of BA
Otherwise, $\lambda \neq 0$:
Let v be eigenvector of AB that matches $\lambda$, then:
$B(AB)v = B\lambda v = \lambda Bv$
Let: $w=Bv$, so $w \neq 0 $ because:
$A(Bv)=\lambda v=Aw=A0 \rightarrow \lambda v=0$, but $\lambda\neq0$ and $v\neq0$, then $w\neq 0$
Finally, we get:
$BA(Bv)=BAw=\lambda Bv=\lambda w \rightarrow \lambda $ is eigenvalue of $BA$