$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\pi/2}\sum_{k = 1}^{n}\sin^{2k - 1}\pars{x}\,\dd x =
\int_{0}^{\pi/2}\sin\pars{x}\,{\sin^{2n}\pars{x} - 1 \over \sin^{2}\pars{x} - 1}
\,\dd x\,\,\, \stackrel{\cos\pars{x}\ \mapsto\ x}{=}\,\,\,
\int_{0}^{1}{1 - \pars{1 - x^{2}}^{n} \over x^{2}}\,\dd x
\\[5mm] = &\
-1 + \int_{0}^{1}{1 \over x}\bracks{-n\pars{1 - x^{2}}^{n - 1}}\pars{-2x}\,\dd x =
-1 + 2n\int_{0}^{1}\pars{1 - x^{2}}^{n - 1}\,\dd x
\\[5mm] \stackrel{x^{2}\ \mapsto\ x}{=}\,\,\, &\
-1 + n\int_{0}^{1}x^{-1/2}\,\pars{1 - x}^{n - 1}\,\dd x =
-1 + n\,{\Gamma\pars{1/2}\Gamma\pars{n} \over \Gamma\pars{1/2 + n}} =
-1 + {\pars{-1/2}!\,n! \over \pars{n - 1/2}!}
\\[5mm] = &\
{1 \over \ds{{n - 1/2 \choose n}}} - 1=
\bbx{\ds{{2^{2n} \over \ds{{2n \choose n}}} - 1}}
\end{align}
A proof of the last identity can be seen in one of my previous answers.