2

Let $A$ denote the set of algebraic elements in $\mathbb{C}$ over $\mathbb{Q}$. Then if $a\in A$, prove that $a^{-1} \in A$.

Since $a\in A$, then there is a polynomial $f(x)=\sum_{i=0}^n \lambda_i x^i$ such that $f(a)=0$. Then $f(a^{-1})=\sum_{i=0}^n \lambda_i a^{-i}$ which is not $0$. I wonder how to modify $f$ so that we can have a new polynomial $\tilde{f}$ such that $\tilde{f}(a^{-1})=0$.

Kenneth.K
  • 1,405

1 Answers1

4

The number $a^{-1}$ is a root of

$$\tilde f:=\sum_{i=0}^n \lambda_{n-i} x^i$$

so it is algebraic.

user26857
  • 52,094
E. Joseph
  • 14,843