Is my proof correct? Prove: $a_n \leq b_n \implies \limsup a_n \leq \limsup b_n$
Proof:
Let $a_n$ and $b_n$ be sequences such that $a_n \leq b_n \forall_n$. Suppose $\limsup a_n \nleq \limsup b_n$.
That is: $\limsup a_n > \limsup b_n$. From this we know:
$\forall_{\epsilon > 0} \exists_N \forall_{n>N} \implies |b_n - b| <\epsilon$. Where $b$ is the $\limsup b_n$.
$\forall_{\epsilon_1 > 0} \exists_{N_1} \forall_{n > N_1} \implies |a_n - a| < \epsilon_1$. Where $a$ is the $\limsup a_n$
So, let $a^* = a + \dfrac{\epsilon_1}{2}$ and let $b^* = b - \dfrac{\epsilon}{2}$.
Hence, $a^* \in |a_n - a| <\epsilon_1$ and $b^* \in |b_n - b| < \epsilon$. And clearly we see that $b^* < a^*$.Thus, we have found an element of $b_n$ namely $b^* < a^*$ an element of $a$. This is contradiction since we are given $a_n \leq b_n \forall_n$.
Therefore, the supposition is false, and $\limsup a_n \leq \limsup b_n$.