sequence a(n) is bounbed and sequence b(n) converges. Show that
a(n)≤b(n) (∀ n ∈ ℕ) ⇒lim sup a(n)≤lim b(n)
Since a(n) is bounded, a(n) has a convergent subsequence. let a1'(n) be a subsequence of a(n). Then, a1'(n)≤b(n) (∀ n ∈ ℕ), a2'(n)≤b(n) (∀ n ∈ ℕ),... ak'(n)≤b(n) (∀k∈ ℕ) thus, lim ak'(n)≤lim b(n) ⇒lim sup a(n)≤lim b(n) Is this a valid proof?