If $a_k\in\mathbb{C}$ ($k\in\mathbb{Z}$), here are two equivalent definitions for $$ \sum_{k=-\infty}^{\infty}a_k $$ For reference, the two definitions are:
- $$\sum_{k=-\infty}^{\infty}a_k=L\\ \Updownarrow\\\forall\epsilon>0,\exists N,m,n> N\implies\left|\sum_{k=-m}^na_k-L\right|<\epsilon$$
- $$ \sum_{k=-\infty}^{\infty}a_k=L\\ \Updownarrow\\ \sum_{k=0}^{\infty}a_k\text{ and }\sum_{k=1}^{\infty}a_{-k}\text{ both exist and }\sum_{k=0}^{\infty}a_k+\sum_{k=1}^{\infty}a_{-k}=L $$
Questions:
Is the notation $\displaystyle\sum_{k\in\mathbb{Z}}a_k$ usually defined to mean $\displaystyle\sum_{k=-\infty}^{\infty}a_k$ (according to one of the two equivalent definitions given)?
Is the notation $\displaystyle\sum_{k\in\mathbb{Z}}a_k$ a particular case of a definition of a summation of complex numbers over arbitrary index sets (see here)?
If the answer to question 2. is yes, then are the definitions I just gave consistent with the general definition?