If $a_k\in\mathbb{C}$, then define $$ \sum_{k=-\infty}^{\infty}a_k=L\\ \Updownarrow\\\forall\epsilon>0,\exists N,m,n> N\implies\left|\sum_{k=-m}^na_k-L\right|<\epsilon $$
Question: Is it true that
$$ \sum_{k=-\infty}^{\infty}a_k=L\\ \Updownarrow\\ \sum_{k=0}^{\infty}a_k\text{ and }\sum_{k=1}^{\infty}a_{-k}\text{ both exist and }\sum_{k=0}^{\infty}a_k+\sum_{k=1}^{\infty}a_{-k}=L $$
Thoughts:$[\Downarrow]$ Couldn't come up with something useful. Tried to show that both series are Cauchy. Failed.
$[\Uparrow]$ Let $$ \alpha:=\sum_{k=0}^{\infty}a_k\\ \beta:=\sum_{k=1}^{\infty}a_{-k} $$ Given $\epsilon>0$, there exist $N_1,N_2$ such that $$ \left|\sum_{k=0}^na_k-\alpha\right|<\frac{\epsilon}{2}\\ \left|\sum_{k=1}^ma_{-k}-\beta\right|<\frac{\epsilon}{2} $$ whenever $n>N_1$ and $m>N_2$. Hence if $N:=\max\{N_1,N_2\}$ then \begin{align} \left|\sum_{k=-m}^na_k-L\right|&=\left|\sum_{k=0}^na_k-\alpha+\sum_{k=1}^ma_{-k}-\beta\right|\\ &\leq\left|\sum_{k=0}^na_k-\alpha\right|+\left|\sum_{k=1}^ma_{-k}-\beta\right|\\ &<\frac{\epsilon}{2}+\frac{\epsilon}{2}\\ &=\epsilon \end{align} whenever $m,n>N$.