Induction for $1^2+3^2+5^2+...+(2n-1)^2= \binom{2n+1}{3}$.
I am stuck... This is what I have so far... Base case: $n=1, 1=\binom{2n+1}{3}\rightarrow 1=1$.
Inductive step: Assume $n=k$ is true and show $n=k+1$ holds.
$$1^2+3^2+5^2+...+(2k-1)^2+(2(k+1)-1)^2= \binom{2(k+1)+1}{3}$$ $$\binom{2k+1}{3}+(2(k+1)-1)^2=\binom{2k+2}{3}$$ $$\frac{(2k+1)!}{(2k+1-3)!3!}+(2(k+1)-1)^2=\binom{2(k+1)+1}{3}$$ $$\frac{(2k+1)!}{(2k-2)!3!}+(2(k+1)-1)^2=\binom{2(k+1)+1}{3}$$
...
should read
$$1^2+3^2+...+(2n-1)^2+(2(n+1)-1)^2$$
which is equal to
$$1^2+3^2+...+(2n-1)^2+(2n+2-1)^2$$
– JSP Jan 27 '17 at 02:18