Here's a proof of the inequality. Start by setting $\epsilon=\lVert A-B\rVert > 0$. I am using the operator norm on $\mathbb{R}^{m\times m}$, so this is the maximum absolute eigenvalue of $A-B$. Exchanging $A$ and $B$ if necessary, there exists a unit vector $e_1$ with $(B-A)e_1=\epsilon e_1$. Diagonalising the bilinear form $(x,y)=x^TAy$ on the orthogonal complement of $e_1$ we extend to an orthonormal basis $(e_1,e_2,\ldots,e_m)$ with respect to which $A$ is
$$
A = \left(\begin{array}{ccc}a_1&-u_2&-u_3&-u_4&\cdots\\
-u_2&a_2&0&0&\cdots\\
-u_3&0&a_3&0&\cdots\\
-u_4&0&0&a_4&\\
\vdots&\vdots&\vdots\end{array}\right)
$$
Positive semidefiniteness of $A$ gives $\sum_{k=2}^mu_k^2/a_k\le a_1$ (any terms with $a_k=0$ necessarily have $u_k=0$, and I am setting the ratio to zero). This inequality follows from $x^TAx\ge0$ where $x_1=1$ and $x_k=u_k/a_k$ for $k\ge2$.
Now, choose a $\delta_0$ small enough, the precise value to be chosen later. As we have $m$ distinct intervals $(\delta^2,\delta)$ for $\delta=\delta_0^{2^k}$ ($k=0,1,\ldots,m-1$), at least one of these will be disjoint from $\{\lvert u_k/a_k\rvert\colon k=2,\ldots,m\}$. Let $S$ be the set of $k=2,\ldots,m$ with $a_k=0$ or $\lvert u_k\rvert/a_k\ge\delta$, and $S^\prime=\{2,\ldots,m\}\setminus S$, so that $\lvert u_k\rvert/a_k\le\delta^2$ for $k\in S^\prime$. Define $x\in\mathbb{R}^m$ by $x_1=1$ and
$$
x_k=\begin{cases}
0,&k\in S,\\
u_k/a_k,&k\in S^\prime.
\end{cases}
$$
We can compute
$$
(Ax)_1=a_1-\sum_{k\in S^\prime}u_k^2/a_k\ge\sum_{k\in S}u_k^2/a_k\ge\delta\sum_{k\in S}\lvert u_k\rvert\ge\delta u
$$
where $u=\sqrt{\sum_{k\in S}u_k^2}$.
And, $(Ax)_k=-u_k$ for $k\in S$ and $(Ax)_k=0$ for $k\in S^\prime$.
If we define $C\in\mathbb{R}^{m\times m}$ by $C_{11}=B_{11}=A_{11}+\epsilon$ and $C_{ij}=A_{ij}$ otherwise, then
$$
\lVert Cx\rVert=\sqrt{((Ax)_1+\epsilon)^2+u^2}.
$$
As $(Ax)_1\ge\delta u$, this implies
$$
\lVert Cx\rVert\ge\frac{\epsilon\delta}{\sqrt{1+\delta^2}}+\lVert Ax\rVert.
$$
Here, I have used the simple fact that the gradient $(d/da)\sqrt{a^2+u^2}\ge\delta/\sqrt{1+\delta^2}$ over $a\ge\delta u$.
We also have $\lVert C-B\rVert\le\epsilon$ and, as $\lvert x_k\rvert\le\delta^2$ for $k=2,\ldots,m$,
$$
\left\lvert\lVert Cx\rVert-\lVert Bx\rVert\right\rvert
\le\lVert(C-B)x\rVert\le\epsilon\delta^2\sqrt{m-1}.
$$
Hence,
$$
\lVert Bx\rVert-\lVert Ax\rVert\ge\frac{\epsilon\delta}{\sqrt{1+\delta^2}}-\epsilon\delta^2\sqrt{m-1}.
$$
So, as we have $\lVert x\rVert\le\sqrt{1+(m-1)\delta^4}$ and $\epsilon=\lVert A-B\rVert$,
$$
\sup_{\lVert x\rVert=1}\left\lvert\lVert Ax\rVert-\lVert Bx\rVert\right\rvert\ge\left(\frac{1}{\sqrt{1+\delta^2}}-\delta\sqrt{m-1}\right)\frac{\delta}{\sqrt{1+(m-1)\delta^4}}\lVert A-B\rVert.
$$
As $\delta$ is in the range $\delta_0^{2^{m-1}}\le\delta\le\delta_0$,
$$
\sup_{\lVert x\rVert=1}\left\lvert\lVert Ax\rVert-\lVert Bx\rVert\right\rvert\ge\left(\frac{1}{\sqrt{1+\delta_0^2}}-\delta_0\sqrt{m-1}\right)\frac{\delta_0^{2^{m-1}}}{\sqrt{1+(m-1)\delta_0^4}}\lVert A-B\rVert.
$$
Choosing $\delta_0$ small enough to make the multiplier on the right hand side positive, which can be done independently of $A,B$ (e.g., $\delta_0=1/(2\sqrt{m})$), gives the result.