I have to represent the function on the left as a power series, and this is the solution to it but I don't know how to calculate this for example when n=1?
Asked
Active
Viewed 992 times
1
-
$\displaystyle{{-1/2 \choose n} = {n - 3/2 \choose n}\left(-1\right)^{n}}$ – Felix Marin Jan 21 '17 at 21:55
-
1$\displaystyle{{-1/2 \choose n} = \left(-,{1 \over 4}\right)^{n} {2n \choose n}}$ – Felix Marin Jan 21 '17 at 22:02
-
How do I get that? Did you use some identities? – Nebeski Jan 22 '17 at 18:39
-
I got it in another post. – Felix Marin Jan 23 '17 at 02:39
3 Answers
0
By definition
$${-\frac{1}{2} \choose 2}=\frac{-\frac{1}{2}(-\frac{1}{2}-1)}{2!}$$
Notice $2$ terms in numerator.
$${-\frac{1}{2} \choose 3}=\frac{-\frac{1}{2}(-\frac{1}{2}-1)(-\frac{1}{2}-2)}{3!}$$
Notice $3$ terms in numerator.
But also remember ${ -\frac{1}{2} \choose 0}=1$.

Ahmed S. Attaalla
- 18,518
0
The symbol ${\alpha \choose n}$ is defined by :
$${\alpha \choose n}=\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$$
So :
$${{-\frac{1}{2}}\choose0}=1\qquad{{-\frac{1}{2}}\choose1}=-\frac{1}{2}\qquad{{-\frac{1}{2}}\choose2}=\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2}=\frac{3}{8}$$
and so on ...

Adren
- 7,515
- 10
- 26