From the conditions $f(n)\le f(n+1)$ and $\frac{f'(n)}{f(n)}\le d/n$ we have
$$1\le \frac{f(n+1)}{f(n)}\le \left(1+\frac1n\right)^d \tag 1$$
Note that the right-hand side of the inequality in $(1)$ can be obtained by integrating the inequality $\int_n^{n+1}\left(\log(f(x)\right)'\,dx\le \int_n^{n+1}d\frac{1}{x}\,dx$.
Application of the squeeze theorem reveals
$$\lim_{n\to \infty}\frac{f(n+1)}{f(n)}=1 \tag 2$$
Alongside $(1)$, it is straightforward to show from the condition $f'(n)/f(n)\le d/n$ that
$$\lim_{n\to \infty}\frac{x^n}{f(n)}=\infty \tag 3$$
Note that $\int_1^n \left(\log(f(x)\right)'\,dx\le \int_1^{n}d\frac{1}{x}\,dx$ yields $f(n)\le f(1)\,n^d$ and $\frac{x^n}{f(n)}\ge \frac{x^n}{f(1)\,n^d}\to \infty$.
Using $(2)$ we find
$$\begin{align}
\lim_{n\to \infty}\left(\frac{\sum_{k=1}^{n+1}\frac{x^k}{f(k)}-\sum_{k=1}^{n}\frac{x^k}{f(k)}}{\frac{x^{n+1}}{f(n+1)}-\frac{x^n}{f(n)}}\right)&=\lim_{n\to \infty}\left(\frac{\frac{x^{n+1}}{f(n+1)}}{\frac{x^{n+1}}{f(n+1)}-\frac{x^{n}}{f(n)}}\right)\\\\
&=\lim_{n\to \infty}\left(\frac{x}{x-\frac{f(n+1)}{f(n)}}\right)\\\\
&=\frac{x}{x-1}\tag 4
\end{align}$$
Finally, equipped with $(2)$, the Stolz-Cesaro Theorem is applicable from which we obtain the coveted limit
$$\lim_{n\to \infty}\frac{\sum_{k=1}^n\frac{x^k}{f(k)}}{\frac{x^n}{f(n)}}=\lim_{n\to \infty}\left(\frac{\sum_{k=1}^{n+1}\frac{x^k}{f(k)}-\sum_{k=1}^{n}\frac{x^k}{f(k)}}{\frac{x^{n+1}}{f(n+1)}-\frac{x^n}{f(n)}}\right)=\frac{x}{x-1}$$
as conjectured!