What is $\lim_n \frac{n}{2^n}\sum_{k=1}^n \frac{2^k}{k}$ ?
Here are a few remarks:
Since $x\mapsto \frac{2^x}{x}$ is increasing when $x\geq 2$, one might be tempted to use the integral test. This fails: when doing so, one gets $a_n\leq \sum_{k=1}^n \frac{2^k}{k}\leq b_n$ where $a_n\sim \frac{2^n}{\ln (2)n}$ and $b_n\sim \frac{2^{n+1}}{\ln (2)n}$. Unfortunately $b_n$ is too big and this estimate doesn't yield the limit.
Here's my solution: since it's easy to sum $2^k$ and the difference $\frac{1}{k}-\frac{1}{k+1}$ is small, it's natural to try summation by parts: $$\begin{align} \sum_{k=1}^n \frac{2^k}{k} &=\frac{S_n}{n+1}-1+\sum_{k=1}^n S_k \left(\frac{1}{k}-\frac{1}{k+1} \right)\quad \text{where} \; S_n=\sum_{k=0}^n 2^k\\ &= \frac{2^{n+1}}{n+1} + \sum_{k=1}^n \frac{2^{k+1}}{k(k+1)} - \underbrace{1 - \sum_{k=1}^n\left(\frac{1}{k(k+1)}\right) - \frac{1}{n+1}}_{\text{bounded}}\\ \end{align}$$
Intuition suggests $\displaystyle \sum_{k=1}^n \frac{2^{k+1}}{k(k+1)}=o\left(\frac{2^n}n \right)$ but it's not immediate to prove. I had to resort to another summation by parts! Indeed $$\begin{align}\small\sum_{k=1}^n \frac{2^{k+1}}{k(k+1)}&= \small 2\left[ \frac{2^{n+1}}{n(n+1)} + 2\sum_{k=1}^n \left(\frac{2^{k+1}}{k(k+1)(k+2)}\right)-\frac 12 -2\sum_{k=1}^n \left(\frac{1}{k(k+1)(k+2)}\right) - \frac{1}{n(n+1)}\right]\\ &\small\leq \frac{2^{n+2}}{n(n+1)}+\frac{2^{n+2}}{n(n+1)(n+2)}\cdot n \\ &\small= o\left(\frac{2^n}n \right) \end{align}$$
Hence $$\sum_{k=1}^n \frac{2^k}{k} = \frac{2^{n+1}}{n+1} + o\left(\frac{2^n}n \right)$$ and $$\lim_n \frac{n}{2^n}\sum_{k=1}^n \frac{2^k}{k} = 2$$
This solution is quite tedious and computational... That's why I'm looking for a shorter or smarter solution that avoids summation by parts (integration by parts is easy to perform on functions, it just gets quite heavy with series).