$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\large 1)$
\begin{align}
\int_{0}^{\infty}{\sin^{2}\pars{t} \over t^{2}}\,\dd t & =
{1 \over 2}\lim_{N \to \infty}\int_{-N\pi}^{N\pi}
{\sin^{2}\pars{t} \over t^{2}}\,\dd t =
{1 \over 2}\lim_{N \to \infty}\sum_{k = -N}^{N - 1}\int_{k\pi}^{\pars{k + 1}\pi}{\sin^{2}\pars{t} \over t^{2}}\,\dd t
\\[5mm] & =
{1 \over 2}\lim_{N \to \infty}\sum_{k = -N}^{N - 1}\int_{0}^{\pi}{\sin^{2}\pars{t} \over \pars{t + k\pi}^{2}}\,\dd t =
{1 \over 2}\int_{0}^{\pi}\sin^{2}\pars{t}
\sum_{k = -\infty}^{\infty}{1 \over \pars{t + k\pi}^{2}}\,\dd t
\\[5mm] & =
{1 \over 2}\int_{0}^{\pi}\sin^{2}\pars{t}\csc^{2}\pars{t}\,\dd t =
\bbx{\ds{\pi \over 2}}
\end{align}
$\large 2)$
\begin{align}
\int_{0}^{\infty}{\sin^{2}\pars{t} \over t^{2}}\,\dd t & =
\int_{0}^{\infty}\sin^{2}\pars{t}\pars{\int_{0}^{\infty}x\expo{-tx}\,\dd x}
\dd t =
\int_{0}^{\infty}x\,\Re\int_{0}^{\infty}
{1 - \expo{2t\,\ic} \over 2}\,\expo{-tx}\dd t\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{\infty}x\,{4/x \over 4 + x^{2}}\,\dd x =
\int_{0}^{\infty}{\dd x \over x^{2} + 1} = \bbx{\ds{\pi \over 2}}
\end{align}