This is a problem from a past qualifying exam:
The Fourier transform of the characteristic function $h=\chi_{[-1,1]}$ of the interval $[-1,1]$ is $$\hat h(\xi) =\sqrt{\frac{2}{\pi}} \frac{\sin \xi}{\xi}.$$ Using various properties of the Fourier transform, calculate $$\int_0^\infty \frac{\sin x}{x}dx$$ $$\int_0^\infty \big(\frac{\sin x}{x}\big)^2dx$$ $$\int_0^\infty \big(\frac{\sin x}{x}\big)^4dx.$$ Note: Here we are using the definition of the Fourier transform $$\hat f(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-ix\xi} f(x) dx.$$ To evaluate the third integral, you may make use of the formula $$ (h\ast h)(x) = \begin{cases} 2-|x| & \ |x|<2 \\ 0 & \ |x| \geq 2 \end{cases}$$.
I figured out the $\int_0^\infty \big(\frac{\sin x}{x}\big)^2dx$ portion by simply using Plancherel, i.e. $||h||_2^2 = ||\hat h||_2^2$. I am still struggling with the other cases, however. I have tried the Fourier Inversion as well as multiplication formula. Because of the hint, I would gather that in the last case you are also supposed to use the fact that $\widehat{h\ast h} = \hat h \cdot \hat h$.