The Borwein cubic theta functions $a(q),b(q),c(q)$ and the doubly-periodic Dixonian elliptic functions $\mathrm{sm}(z), \mathrm{cm}(z)$ parameterize the Fermat cubic $x^3+y^3=1$, so
$$\frac{b^3(q)}{a^3(q)}+\frac{c^3(q)}{a^3(q)} =1\tag1$$
$$\mathrm{sm}^{3}(z)+\mathrm{cm}^{3}(z)=1\tag2$$
This post asks if there is any relation between the Borwein and Dixonian versions. It is known that the former is associated with $_2F_1\big(\tfrac13,\tfrac23;\color{blue}1;u\big)$ while the latter is with $_2F_1\big(\tfrac13,\tfrac23;\color{blue}{\tfrac43};v\big)$.
For argument $q=e^{2\pi i \sqrt{-n}}$, we have the nice relationship,
$$\large \frac{_2F_1\Big(\tfrac13,\tfrac23;1;\tfrac{b^3(q)}{a^3(q)} \Big)}{_2F_1\Big(\tfrac13,\tfrac23;1;\tfrac{c^3(q)}{a^3(q)} \Big)}=\sqrt{3n}$$
Q: By analogy, does the ratio, $$\frac{_2F_1\Big(\tfrac13,\tfrac23;\tfrac43;\mathrm{sm}^3(z) \Big)}{_2F_1\Big(\tfrac13,\tfrac23;\tfrac43;\mathrm{cm}^3(z) \Big)}=\,??\tag3$$ evaluate to anything "meaningful" for appropriate choice of argument $z$?
P.S. To test this conjecture, for the circle $x^2+y^2=1$, we have the Dedekind eta quotients $\alpha(q), \beta(q)$ parameterization (given here) and the singly-periodic trigonometric functions,
$$\alpha^8(q)+\beta^8(q)=1\tag4$$ $$\sin^2 z+\cos^2 z=1\tag5$$
The analogous ratios, $$\frac{_2F_1\Big(\tfrac12,\tfrac12;1; \beta^8(q) \Big)}{ _2F_1\Big(\tfrac12,\tfrac12;1; \alpha^8(q)\Big)}=\sqrt{4n}$$ and choice of $0<z<1$,
$$\frac{_2F_1\Big(\tfrac12,\tfrac12;\tfrac32; \cos^2 z \Big)}{ _2F_1\Big(\tfrac12,\tfrac12;\tfrac32; \sin^2 z \Big)}=\Big(\frac{\pi}{2z}-1\Big) \tan z$$ so $(3)$ might indeed evaluate to some closed-form, perhaps involving the fundamental constant of Dixonian functions $\large \pi_3=\frac{\sqrt3}{2\pi}\Gamma^3\big(\tfrac13\big)$.