I need help understanding this:
Prove that $$\lim_{n\to\infty}(\sqrt n)^\frac{1}{n}=1$$
$$(\sqrt n)^\frac{1}{n}\geq (\sqrt1)^\frac{1}{n}=1, \forall n\in\Bbb N$$ By binomial theorem we get for $n\geq 2$
$$n=((\sqrt n)^\frac{1}{n})^n=[1+((\sqrt n)^\frac{1}{n}-1)]^n=\sum_{k=0}^{n}{{n}\choose{k}}1^{n-k}(\sqrt n^\frac{1}{n}-1)^k$$ $$\geq 1+{{n}\choose {2}}(\sqrt n^\frac{1}{n}-1)^2=1+\frac{n(n-1)}{2}(\sqrt n^\frac{1}{n}-1)^2$$ $$\Rightarrow (\sqrt n^\frac{1}{n}-1)^2\leq \frac{2}{n}$$ $$\Rightarrow \sqrt n^\frac{1}{n}\leq 1+\frac{\sqrt 2}{\sqrt n}$$ $1+\frac{\sqrt 2}{\sqrt n}$ approaches $1$ for $n \rightarrow \infty$ so by the sandwich theorem we get $\lim_{n\to\infty}(\sqrt n)^\frac{1}{n}=1$
I don't understand this part: $$ \sum_{k=0}^{n}{{n}\choose{k}}1^{n-k}(\sqrt n^\frac{1}{n}-1)^k\geq 1+{{n}\choose {2}}(\sqrt n^\frac{1}{n}-1)^2.$$ Could someone explain how they got that on the RHS?