All of this can be achieved by weak induction.
I'll use $f[x_0,x_1,...,x_k]_n$ to denote $f[x_0,x_1,...,x_k]$ where $f(r)=r^n$.
First, we'll show that $f[s,t]_n=\sum_{a+b=n-1}(s^at^b)$ for all $n$ (where $a$ and $b$ are nonnegative) by simple induction.
(a proof can be found here so you can skip the next paragraph if you want)
Clearly $f[s,t]_1=\sum_{a+b=0}(s^at^b)$ as $$f[s,t]_1=\frac{f[t]_1-f[s]_1}{t-s}=\frac{t-s}{t-s}=1=s^0t^0=\sum_{a+b=0}(s^at^b)$$
Now, suppose for some $p$, $f[s,t]_p=\sum_{a+b=p-1}(s^at^b)$.
Then, we can relate $f[s,t]_{p+1}$ and $f[s,t]_p$ as follows: $$f[s,t]_{p+1}=\frac{f[t]_{p+1}-f[s]_{p+1}}{t-s}=\frac{t^{p+1}-s^{p+1}}{t-s}=\frac{t^pt-s^ps}{t-s}=\frac{t^p(t-s)+s(t^p-s^p)}{t-s}\\=t^p+s\frac{t^p-s^p}{t-s}=t^p+sf[s,t]_p$$
So (by the induction hypothesis): $$f[s,t]_{p+1}=t^p+s\bigg(\sum_{a+b=p-1}(s^at^b)\bigg)=t^p+s\bigg(\sum_{a+b=p-1,\\0\leq a,b \leq p-1}(s^at^b)\bigg)=t^p+\sum_{a+b=p-1,\\0\leq a,b \leq p-1}(s^{a+1}t^b)$$
Using a change of variable from $a+1$ to $c$: $$t^p+\sum_{c+b=p,\\1\leq c\leq p\\0\leq b \leq p-1}(s^ct^b)=s^0t^p+\sum_{c+b=p,\\1\leq c\leq p\\0\leq b \leq p-1}(s^ct^b)=\sum_{c+b=p,\\0\leq c,b\leq p}(s^ct^b)=\sum_{c+b=(p+1)-1}(s^ct^b)\\=\sum_{a+b=(p+1)-1}(s^at^b)$$
That proves the general formula for $f[s,t]_n$.
Now suppose you have shown that $f[x_0,x_1,...,x_{k-1}]=\sum_{i_0+i_1+...+i_{k-1}=n-k+1}(x_0^{i_0}x_1^{i_1}...x_{k-1}^{i_{k-1}})$ for the given $n$ for some $k$.
(again, $i_0,i_1,...,i_{k-1}$ are all nonnegative)(the case for $k=2$ was just proved above)
Then: $$f[x_0,x_1,...,x_k]=\frac{f[x_1,x_2,...,x_k]-f[x_0,x_1,...,x_{k-1}]}{x_k-x_0}\\=\frac{\sum_{i_1+i_2+...+i_k=n-k+1}(x_1^{i_1}x_2^{i_2}...x_k^{i_k})-\sum_{i_1+i_2+...+i_k=n-k+1}(x_0^{i_1}x_1^{i_2}...x_{k-1}^{i_k})}{x_k-x_0}\\=\frac{\sum_{i_1+i_2+...+i_k=n-k+1}(x_1^{i_1}x_2^{i_2}...x_{k-1}^{i_{k-1}}x_k^{i_k})-\sum_{i_1+i_2+...+i_k=n-k+1}(x_1^{i_1}x_2^{i_2}...x_{k-1}^{i_{k-1}}x_0^{i_k})}{x_k-x_0}$$
In the above step we have simply relabeled the indices of the powers in the second term to our advantage- all that matters is that whenever the powers appearing on the terms $x_1,x_2,...,x_{k-1}$ are the same in both sums, the powers appearing on $x_k$ and $x_0$ will necessarily be the same (because the sum of all powers $=n-k+1$)
$$\\=\frac{\sum_{i_1+i_2+...+i_k=n-k+1}(x_1^{i_1}x_2^{i_2}...x_{k-1}^{i_{k-1}}(x_k^{i_k}-x_0^{i_k}))}{x_k-x_0}\\=\sum_{i_1+i_2+...+i_k=n-k+1}(x_1^{i_1}x_2^{i_2}...x_{k-1}^{i_{k-1}}\bigg(\frac{x_k^{i_k}-x_0^{i_k}}{x_k-x_0}\bigg))\\=\sum_{i_1+i_2+...+i_k=n-k+1}(x_1^{i_1}x_2^{i_2}...x_{k-1}^{i_{k-1}}\;f[x_0,x_k]_{i_k})\\=\sum_{i_1+i_2+...+i_k=n-k+1}(x_1^{i_1}x_2^{i_2}...x_{k-1}^{i_{k-1}}\bigg(\sum_{j_1+j_2=i_k-1}x_0^{j_1}x_k^{j_2}\bigg))$$
Noting that $i_1+i_2+...i_{k-1}+(j_1+j_2)=i_1+i_2+...+i_{k-1}+(i_k-1)=(n-k+1)-1=n-k\\=n-(k+1)+1$ and relabeling indices again, we get:
$$\sum_{i_0+i_1+...+i_{k-1}+i_k=n-(k+1)+1}(x_0^{i_0}x_1^{i_1}...x_k^{i_k})$$
So that does the general formula for $f[x_0,x_1,...,x_k]_n$ for us (for all $n$ and $k$).
Now, your question is about what happens when $k=n-1$. Well, in that case: $$f[x_0,x_1,...,x_{n-1}]_n=\sum_{i_0+i_1+...+i_{n-1}=n-n+1}(x_0^{i_0}x_1^{i_1}...x_{n-1}^{i_{n-1}})=\sum_{i_0+i_1+...+i_{n-1}=1}(x_0^{i_0}x_1^{i_1}...x_{n-1}^{i_{n-1}})$$
Since all of $i_0,i_1,...,i_{n-1}$ are to be nonnegative integers, the only possibilities for their values are for one of the $i_k$'s to be 1 and the rest to be zero.
So we get $$f[x_0,x_1,...,x_{n-1}]_n\\=x_0^1x_1^0x_2^0...x_{n-1}^0+x_0^0x_1^1x_0^0...x_{n-1}^0+x_0^0x_1^0x_2^1...x_{n-1}^0+\;.\;.\;.\; +x_0^0x_1^0x_2^0...x_{n-1}^1\\=x_0+x_1+...+x_{n-1}=\sum_{i=0}^{n-1}x_i$$
(please comment or edit for any corrections)