$a^n - b^n =$
$= a^{n}b^{0} + (a^{n-1}b^{1} + a^{n-2}b^{2} + \cdots + a^{2}b^{n-2} + a^{1}b^{n-1}) \\ \space\space\space - a^{0}b^{n} - (a^{n-1}b^{1} + a^{n-2}b^{2} + \cdots + a^{2}b^{n-2} + a^{1}b^{n-1}) = $
$= (a^{n}b^{0} + a^{n-1}b^{1} + a^{n-2}b^{2} + \cdots + a^{2}b^{n-2} + a^{1}b^{n-1}) \\ \space\space\space - (a^{n-1}b^{1} + a^{n-2}b^{2} + \cdots + a^{2}b^{n-2} + a^{1}b^{n-1} + a^{0}b^{n}) = $
$= a(a^{n-1}b^{0} + a^{n-2}b^{1} + \cdots + a^{1}b^{n-2} + a^{0}b^{n-1}) \\ \space\space\space - b(a^{n-1}b^{0} + a^{n-2}b^{1} + \cdots + a^{1}b^{n-2} + a^{0}b^{n-1}) = $
$= (a - b)(a^{n-1}b^{0} + a^{n-2}b^{1} + \cdots + a^{1}b^{n-2} + a^{0}b^{n-1})= $
$= (a - b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1})$
I was surprised that there was no question on Math.SE regarding this equation
Maybe because that's simply the formula for the geometric progression sum $1+x+x^2+\cdots+x^{n-1} = (1-x^n)/(1-x)$ with $x=b/a$ which is fairly well known. – dxiv Nov 26 '16 at 05:20