Suppose I have $f:\mathbb{R}^2 \to \mathbb{R}$. What conditions do I need to say that
$$\lim_{x \to a} \lim_{y \to b} f(x,y) = \lim_{y \to b} \lim_{x \to a} f(x,y)$$
?
What about in a more general case, by taking $X,Y$ and $Z$ topological (Hausdorff) spaces and $f$ from $X \times Y$ to $Z$ ?
Thank you
} \end{cases} $$ none of repeated limits $\lim\limits_{x \to 0} \lim\limits_{y \to 0} f(x,y), \quad \lim\limits_{y \to 0} \lim\limits_{x \to 0} f(x,y)$ does not exist, but double limit $$ \lim\limits_{x \to 0}_{y \to 0} f(x,y)=0.$$ – M. Strochyk Oct 05 '12 at 20:38