For the boundedness:
You can write, using the triangle inequality and your assumption,$^{(\dagger)}$ $$
\lvert a_n - a_0 \rvert = \left\lvert\sum_{k=0}^{n-1} (a_{k+1}-a_k)\right\rvert
\leq \sum_{k=0}^{n-1} \left\lvert a_{k+1}-a_k\right\rvert
\leq \sum_{k=0}^{n-1} \frac{1}{2^{k}}\left\lvert a_{1}-a_0\right\rvert
\leq \sum_{k=0}^{\infty} \frac{1}{2^{k}}\left\lvert a_{1}-a_0\right\rvert
= 2\left\lvert a_{1}-a_0\right\rvert
$$
so we get $\lvert a_n\rvert \leq \lvert a_n - a_0 \rvert + \lvert a_0\rvert \leq 2\lvert a_1 - a_0 \rvert + \lvert a_0\rvert$ for all $n$.
$(\dagger)$ Indeed, by a straightforward induction we get $\left\lvert a_{n+1}-a_n\right\rvert
\leq \frac{1}{2^{n}}\left\lvert a_{1}-a_0\right\rvert$ for all $n\geq 0$.
(for the convergence, the same "trick" but starting the sum at some $m$ (i.e., with $a_m$ instead of $a_0$) will enable you to show the sequence is Cauchy.)