Does the limit $\lim _{x\to 0} \frac 1x \int_0^x \left|\cos \frac 1t \right| dt$ exists ? If it does then what is the value ?
I don't think even L'Hospital's rule can be applied . Please help . Thanks in advance
Does the limit $\lim _{x\to 0} \frac 1x \int_0^x \left|\cos \frac 1t \right| dt$ exists ? If it does then what is the value ?
I don't think even L'Hospital's rule can be applied . Please help . Thanks in advance
$$ \begin{align} \lim_{x\to0}\frac1x\int_0^x\left|\,\cos\left(\frac1t\right)\,\right|\mathrm{d}t &=\lim_{x\to\infty}x\int_x^\infty\frac{|\cos(t)|}{t^2}\,\mathrm{d}t\\ &=\lim_{n\to\infty}(x+n\pi)\sum_{k=n}^\infty\int_x^{x+\pi}\frac{|\cos(t)|}{(t+k\pi)^2}\,\mathrm{d}t\tag{1} \end{align} $$ Using the Euler-Maclaurin Sum Formula, $$ \sum_{k=n}^\infty\frac{x+n\pi}{(t+k\pi)^2} =\frac{x+n\pi}{\pi(t+n\pi)}+\frac{x+n\pi}{2(t+n\pi)^2}+O\!\left(\frac1{n^2}\right)\tag{2} $$ Thus, for $x\le t\le x+\pi$,we have $$ \sum_{k=n}^\infty\frac{x+n\pi}{(t+k\pi)^2}=\frac1\pi+O\!\left(\frac1n\right)\tag{3} $$ and therefore, $$ \begin{align} \lim_{x\to0}\frac1x\int_0^x\left|\,\cos\left(\frac1t\right)\,\right|\mathrm{d}t &=\frac1\pi\int_0^\pi|\cos(t)|\,\mathrm{d}t\\ &=\frac2\pi\tag{4} \end{align} $$
As en alternative for the powerfull Euler-Maclaurin asymptotics in @robjohn answer one can use simple zero order approximations and the Squeeze theorem.