$g(x)=\sin(1/x) , g(0)=0$
Define $G(x)=\int _{0}^{x}g\left( t\right) dt$
Show $G'(0)=g(0)$
I use the definition
$$G'(0) = \lim _{h\rightarrow 0}\dfrac {G\left( h\right) -G\left( 0\right) } {h}$$
$$=\lim _{h\rightarrow 0}\dfrac {\int _{0}^{h}g\left( t\right) dt} {h}$$
$$=\lim _{h\rightarrow 0}\dfrac {\int _{0}^{h}\sin(1/t) dt} {h}$$
I have no idea about next step
Can you give me some hint
Thank you!!!