Let $\phi :\mathbb{R} \rightarrow \mathbb{R}$ be a one to one map such that $\phi \left( x+y\right) =\phi \left( x\right) +\phi \left( y\right)$ and $\phi \left( x^{2}\right) =\phi \left( x\right) ^{2}$ for all $x,y\in\mathbb{R}$, $\phi \left( xy\right) =\phi \left( x\right) \phi \left( y\right)$ for all $x,y\in\mathbb{R}$ and $\phi \left( q\right) =q$ for all $p\in\mathbb{Q}$.
Claim1. If $x\leq y$ then $\phi \left( x\right) \leq \phi \left( y\right)$.
Claim2. $\phi \left( x\right) =x$ for all $x\in\mathbb{R}$.
My proof-trying of Claim1. By the definition, $x\leq y$ $\Leftrightarrow$ $\exists z$ $(z\geq 0 \wedge $x+z=y$)$. Thus, $\phi \left( x\right) +\phi \left( z\right) =\phi \left( y\right)$. Hence, we obtain $\phi \left( x\right) \leq \phi \left( y\right)$. But, I don't sure. Can you check?
Can you give a hint for claim2?
Recall that Show $\phi \left( q\right) =q$ for all $q\in\mathbb{Q}$.