Let $\phi :\mathbb{R} \rightarrow \mathbb{R}$ be a one to one map such that $\phi \left( x+y\right) =\phi \left( x\right) +\phi \left( y\right)$ and $\phi \left( x^{2}\right) =\phi \left( x\right) ^{2}$ for all $x,y\in\mathbb{R}$. Show that $\phi \left( xy\right) =\phi \left( x\right) \phi \left( y\right)$ for all $x,y\in\mathbb{R}$ and $\phi \left( q\right) =q$ for all $p\in\mathbb{Q}$.
My proof. By the assumptions, we have $\phi \left( x+y\right) ^{2}=\phi \left( x\right) ^{2}+2\phi \left( xy\right)+\phi \left( y\right)^{2}$. We also have, $\phi \left( x+y\right) ^{2}=\phi \left( x\right) ^{2}+2\phi \left( xy\right)+\phi \left( y\right) ^{2}$. Hence, we obtain $\phi \left( xy\right) =\phi \left( x\right) \phi \left( y\right)$. We are done.
Now, we will show $\phi \left( q\right) =q$ for all $p\in\mathbb{Q}$.
Claim. $\phi \left( \dfrac {a} {b}\right) =b \phi \left( \dfrac {a} {b^{2}}\right)$ $a,b\in\mathbb{Z}$ (as $b\neq 0$).
My question is: How can I prove this claim? I couldn't show to use induction on $b$.
Note: This question is from my set theory class. Tag can be set theory, but I don't sure.