Below are a few ways to prove $\,3^{1/3}\,$ is irrational.
By the Rational Root Test, any rational root of $\rm\:x^3 - 3\:$ is an integer, contradiction.
$\rm\,3^{1/3} = a/b\:\Rightarrow\: a^3 = 3b^3\, $ contra unique factorization: the number of $3$'s in $\rm\,a^3\,$ is a multiple of $3$, versus one more than a multiple of $3$ in $\rm\,3b^3.$
Irrationality proofs for cube roots follow from irrationality proofs for square roots!
Theorem $\ $ If $\rm\ r^3\: =\: \color{#0A0}m\in \mathbb Z\ $ then $\rm\ r\in \mathbb Q\ \Rightarrow\ r\in\mathbb Z$
Proof $\quad\ \rm r = a/b \in \mathbb Q,\ \ \gcd(a,b) = 1\ \Rightarrow\ ad-bc \;=\; \color{#C00}{\bf 1}\;$ for some $\:\rm c,d \in \mathbb{Z}\;\;$ by Bezout.
Thus $\rm\ 0\: =\: (a\!-\!br)\: (dr^2\!+cr) \: =\: \color{#C00}{\bf 1}\cdot r^2 + ac\ r\, - bd\color{#0A0}m \ $ so $\rm\ r\in\mathbb Z\ $ by the quadratic case. $\ $ QED
This inductive proof generalizes to higher-degree.