Below is a simple proof of irrationality of square-roots that I discovered as a teenager (inspired by a proof of Dedekind). It employs the Bezout identity for the gcd, i.e. $\rm\,\gcd(a,b)\,$ is an integral linear combination of the integers $\rm\,a,b,\,$ i.e. $\rm\,\gcd(a,b)\, =\, a d - b c\,$ for some integers $\,\rm c,d$.
Theorem $\ \ \ \rm r = \sqrt{n}\;\;$ is integral if rational, $\:$ for $\:\rm n\in\mathbb{N}$
Proof $\ \ $ Note that $\rm\ r = a/b,\ \ \gcd(a,b) = 1\ \Rightarrow\ ad\!-\!bc \,=\, \color{#C00}{\bf 1}\;$ for some $\:\rm c,d \in \mathbb{Z}\ $ by Bezout.
$\rm\color{#C00}{That\,}$ and $\rm\: r^2\! = \color{#0a0}{ n}\:\Rightarrow\ 0 \,=\, (a\!-\!br)\, (c\!+\!dr) \, =\, ac\!-\!bd\color{#0a0}{ n} \:+\: \color{#c00}{\bf 1}\cdot r,\ $ thus $\ r \in \mathbb{Z}$
This easily generalizes to roots of quadratic polynomials that are monic (lead coef $= 1)$
Theorem $\,\ $ If $\rm\,\ r^2 =\, \color{#0A0}{m\ r + n}\ \,$ for $\rm\ m,n\in\mathbb Z\ $ then $\rm\ r\in \mathbb Q\ \Rightarrow\ r\in\mathbb Z$
Proof $\quad \rm r = a/b\in \mathbb Q,\ \ \gcd(a,b) = 1\ \Rightarrow\ ad\!-\!bc \,=\, \color{#C00}{\bf 1}\;$ for some $\:\rm c,d \in \mathbb{Z}\ $ by Bezout.
So $\rm\,\ 0\, =\, (a\!-\!br)\: (c\!+\!dr)\, =\, ac\! -\! bd(\color{#0A0}{m\:r\!+\!n})+\color{#C00}{\bf 1}\cdot r \, =\, ac\!-\!adm\!-\!bdn + r \ \Rightarrow\ r \in \mathbb{Z}$
This method works for higher degree monic polynomials too, giving a proof by induction on degree of the (monic) Rational Root Test. This implies that roots of $\,x^b-a\,$ are integral if rational, the sought generalization in the OP.
Alternatively, denominator descent can be achieved via Division with Remainder = mod (vs. gcd). We call $\rm\,d\,$ a denom(inator) of $\rm\,r\,$ if $\rm\,dr\in\Bbb Z\ $ (so $\rm\,dr = j\Rightarrow r = j/d\,$ is writable with denom $\rm d)$.
Theorem $\, \ $ If $\rm \ n\in\Bbb Z_{\phantom{\frac{i}.}} $ and $\rm \ \color{#c00}{r = \sqrt{n}}\in \Bbb Q\ $ then $\rm \ r\in \Bbb Z$
Proof $\, $ Deny, so $\,\rm 1 < r = {\small \frac{a}b}\,$ and $\,\rm \color{#b0f}{b\nmid a}$, by $\rm\, r\not\in\Bbb Z,\,$ wlog $\rm\,b = $ $\rm\color{#0af}{least}$ denom. Then as here we infer $\rm\,\color{#90f}{0\neq \bar a} := a\bmod b = \color{#0a0}{a-qb}<b\,$ is a $\rm\color{#0af}{smaller}$ denom for $\rm\,r\,$ by below, contradiction.
$$\begin{align}
\rm \color{#c00}r\,[\ a\: &\rm = b\color{#c00}r\:\!],\ \ \text{i.e. scale equation by $\,\rm\color{#c00}r$}\\[.1em]
\rm -\ q\,[\:\!br &\rm =a\:\!]\\[.1em]
\rm \Rightarrow\ (\color{#0a0}{a\!-\!qb})\:\! r &\rm = b\color{#c00}n\!-\!qa,\ \ \text{by adding prior $2$ equations}
\end{align}$$
Remark $\ $ It is instructive to compare the various denominator descents employed.
The denom descent in the first proof is $\rm\,a,b\,$ denom $\rm\,\Rightarrow\, \gcd(a,b)\,$ [$\color{#c00}{\bf = 1}$] $ $ denom.
In the last proof the denom descent is: $\rm\,a,b\,$ denom $\rm\,\Rightarrow\, a\ {\rm mod}\ b\,=:\,\color{#90f}{\bar a}\:$ denom.
In this answer, the denom descent is: $\rm\, a\!>\!b\,$ denom $\rm\,\Rightarrow\ a\:\!-\:\!b\ $ denom.
These are all essentially special cases of proofs that the ideal $\,a\Bbb Z + b\Bbb Z = \Bbb Z\,$ using fast or slow descent based on the (Euclidean) Division algorithm (with remainder), i.e. specializations of a proof that ideals are principal in a Euclidean domain (compare posts on denominator ideals).
That the numerator $\rm\,a = br\,$ is also a denom of $\rm\,r\,$ generalizes to any algebraic integer $\rm\,r,\,$ most efficiently by using Dedekind's conductor ideal. This generalizes the above proofs into a slick one-line proof that PIDs are integrally-closed, as I explained at length elsewhere. It beautifully abstracts the denominator descent that governs ad-hoc "elementary" irrationality proofs.