2

Let $f:X\to Y$. Prove that $$\text{f is injective}\iff \forall A \subseteq X, \quad f(X-A)\subseteq Y-f(A)$$ My try:
For $\leftarrow$.
Let $f(x_1)= f(x_2)$ and take for $A=\{x_1\}$ then if $x_1\neq x_2$ then $x_2\in X-A$ so $f(x_2)\subseteq Y-f(x_1)=Y-f(x_2)$ so $x_1=x_2$
For $\rightarrow$
If $y\in f(X-A)$ then $f^{-1}(y) \in X-A $
$y\in f(X) $ and $f^{-1}(y)\notin A$
Since $f(X)\subseteq Y$ then $$y\in Y-f(A)$$ I'm not sure for $\leftarrow$, but for $\rightarrow$ I think I'm wrong because didn't use injective

0 Answers0