I know that if $f:X\to Y$ is injective then $f(X \setminus A)\subseteq Y\setminus f(A), \forall A\subseteq X$ . Is the converse true i.e.
if $f:X \to Y$ is a function such that $f(X \setminus A)\subseteq Y\setminus f(A), \forall A\subseteq X$ , then is it true that $f$ is
injective ?