I don't know how to prove this inequality, some help would be appreciated, thank you!
$x< \sin(\frac{\pi x}2)\quad\quad \forall x \in (0,1)$
I don't know how to prove this inequality, some help would be appreciated, thank you!
$x< \sin(\frac{\pi x}2)\quad\quad \forall x \in (0,1)$
Let we have to prove $$t<\sin \left(\frac{\pi t}{2}\right)\;\forall t \in (0,1)$$
Now put $\displaystyle \frac{\pi t}{2} = x\Rightarrow t = \frac{2x}{\pi}$
So we have to prove $$\frac{2x}{\pi}<\sin x\;\forall x \in \left(0,\frac{\pi}{2}\right)$$
Now Slope of $$\displaystyle \bf{OB} = m_{0B} = \frac{\sin x-0}{x-0} = \frac{\sin x}{x}.$$
and Slope of $$\displaystyle \bf{OA} = m_{0A} = \frac{1-0}{\frac{\pi}{2}-0} = \frac{2}{\pi}.$$
So Here in above graph $$\displaystyle \bf{m_{OB}>m_{OA}}$$
So we get $$\displaystyle \frac{\sin x}{x}>\frac{2}{\pi}\Rightarrow \frac{2x}{\pi}<\sin x\;\forall x\in \left(0,\frac{\pi}{2}\right)$$
For $x\in(0,1)$ the function $\sin( \frac\pi2x) $ is an increasing function and we have $$1< \frac\pi2x$$ so $1< \sin (\frac\pi2x) $