As $\cos(\pi-y)=-\cos y$
$\cos\dfrac{7\pi}8=-\cos\dfrac\pi8,$
$\cos\dfrac{6\pi}8=-\cos\dfrac{2\pi}8=-\dfrac1{\sqrt2}$
$\cos\dfrac{5\pi}8=-\cos\dfrac{3\pi}8$
$$\implies\sum_{r=0}^7\cos^{16}\dfrac{r\pi}8=\cos^{16}\dfrac{0\cdot\pi}8+\cos^{16}\dfrac{4\cdot\pi}8+2\sum_{r=1}^3\cos^{16}\dfrac{r\pi}8$$
$$=1+0+2\left(\dfrac1{\sqrt2}\right)^{16}+2\left(\cos^{16}\dfrac{\pi}8+\cos^{16}\dfrac{3\pi}8\right)$$
As $\dfrac{3\pi}8+\dfrac{\pi}8=\dfrac\pi2,\cos\dfrac{3\pi}8=\sin\dfrac{\pi}8$
$$\implies\cos^{16}\dfrac{\pi}8+\cos^{16}\dfrac{3\pi}8=\cos^{16}\dfrac{\pi}8+\sin^{16}\dfrac{\pi}8$$
Now $\cos^2\dfrac{\pi}8\sin^2\dfrac{\pi}8=\dfrac{\sin^2\dfrac\pi4}4=\dfrac18$
$\cos^4\dfrac{\pi}8+\sin^4\dfrac{\pi}8=1-2\cos^2\dfrac{\pi}8\sin^2\dfrac{\pi}8=1-2\cdot\dfrac18=\dfrac34$
$\cos^8\dfrac{\pi}8+\sin^8\dfrac{\pi}8=\left(\cos^4\dfrac{\pi}8+\sin^4\dfrac{\pi}8\right)^2-2\left(\cos^2\dfrac{\pi}8\sin^2\dfrac{\pi}8\right)^2=\left(\dfrac34\right)^2-2\left(\dfrac18\right)^2=\cdots=\dfrac{17}{32}$
$\cos^{16}\dfrac{\pi}8+\sin^{16}\dfrac{\pi}8=\left(\cos^8\dfrac{\pi}8+\sin^8\dfrac{\pi}8\right)^2-2\left(\cos^2\dfrac{\pi}8\sin^2\dfrac{\pi}8\right)^4=\cdots=\dfrac{577}{1024}$
$$\implies\sum_{r=0}^7\cos^{16}\dfrac{r\pi}8=1+\dfrac2{2^8}+\dfrac{577}{1024}\approx1.5712890625$$