This is an extension of the very nice solution posted by @Tad. The objective is to show that for special cases, the results corresponds with those shown in the original question posted.
Let the number of paths be $P$.
It has been shown that
$$P=\mathbf{vM}^{m-2}\mathbf v^T=\left[\binom{2n-q}{n-i}\right]\left[\binom{2(n-q)}{n-q+i-j}\right]^{m-2}\left[\binom{2n-q}{n-i}\right]^T$$
where $i=0,1,\cdots q$.
For $\color{blue}{q=0}$,
$$P=\binom {2n}n\binom {2n}n^{m-2}\binom{2n}n=\color{red}{\binom {2n}n^m}$$
For $\color{blue}{q=1}$,
$$\begin{align}
P&=
\left[\binom{2n-1}{n-i}\right]\left[\binom{2n-2}{n-q+i-j}\right]^{m-2}\left[\binom{2n-1}{n-i}\right]^T\qquad (i=0,1)
\\
&=
\begin{array}
&\left[\binom {2n-1}n\;\;\binom {2n-1}{n-1}\right]\\\hspace{1cm}
\end{array}
\left[\begin{array}
& &\binom {2n-2}{n-1}&\binom {2n-2}n
\\&\binom {2n-2}n&\binom {2n-2}{n-1}
\end{array}\right]^{m-2}
\left[\begin{array}
&\binom {2n-1}{n}\\
\binom {2n-1}{n-1}
\end{array}\right]
\\
&=
\begin{array}
&\left[b\;\;\;b\right]\\\hspace{1cm}
\end{array}
\left[\begin{array}
&a&c \\c&a
\end{array}\right]^{m-2}
\left[\begin{array}
&b\\b
\end{array}\right]
\\
&\text{where }b=\binom {2n-1}n=\binom{2n-1}{n-1}, a=\binom {2n-2}{n-1}, c=\binom {2n-2}n\\
\text{Note that }a+c=b\\
\text{Note also that}\\
\mathbf{Mv}^T&=\left[\begin{array}&a&c \\c&a\end{array}\right]
\left[\begin{array}&b\\b\end{array}\right]=b\left[\begin{array}&a+c \\c+a\end{array}\right]=b\left[\begin{array}&b\\b\end{array}\right]=b\mathbf v^T\\
\text{Hence }\qquad
P=\mathbf{vM}^{m-2}\mathbf v^T&=\mathbf v(b^{m-2}\mathbf v^T)\\
&=b^{m-2}\mathbf{vv}^T\\
&=b^{m-2}(2b^2)\\
&=2b^m\\
&=\color{red}{2\binom {2n-1}n^m}
\end{align}$$
For $\color{blue}{q=n-1}$,
$$P=\left[\binom {n+1}{n-i}\right]\left[\binom 2{1+i-j}\right]^{m-2}\left[\binom {n+1}{n-i}\right]^T$$
Note that
$$\mathbf M=\left[\binom 2{1+i-j}\right]=
\begin{array}
& && &i \\
&& &0 &1 &2 &3 &4 &\cdots &(n-2) &(n-1)\\
\hline
&&j &\color{orange}2 &\color{orange}1 &- &- &- &\cdots &- &-\\
&&1 &\color{orange}1 &\color{orange}2 &\color{orange}1 &- &- &\cdots &- &-\\
&&2 &- &1 &\color{orange}2 &\color{orange}1 &-&\cdots &- &-\\
&&3 &- &- &\color{orange}1 &\color{orange}2 &\color{orange}1&\cdots &- \\
&&\vdots\\
&&(n-2)&- &- &- &- &- &\cdots &\color{orange}2 &\color{orange}1\\
&&(n-1)&- &- &- &- &- &\cdots &\color{orange}1 &\color{orange}2\\
\end{array}$$
and that
$$\sum_{r=0}^3 \binom 2r\binom {n+1}{n+k-r}=\binom {n+3}{n-k}$$
Hence, for $m=3$,
$$\mathbf {Mv}^T=\left[\binom {n+1}{n+1-j}\right]^T-[1,0,0,\cdots,0,1]^T $$
and
$$\begin{align}P=\mathbf {vMv}^T
&=\left[\binom {n+1}{n-i}\right]
\bigg\lbrace\color{blue}{\left[\binom {n+3}{n+1-j}\right]^T}
\color{green}{-[1,0,0,\cdots,0,1]^T}\bigg\rbrace\\
&=\color{blue}{\binom {2n+4}{n+2}-\binom {n+1}1-\binom {n+1}n} -
\color{green}{\binom {n+1}{n+1}\binom {n+3}{n+2}-\binom {n+1}0\binom {n+3}1}\\
&=\binom {2(n+2)}{n+2}-2\binom {2(n+2)}1
\end{align}$$
Similar, it can be shown that, for $m=4$,
$$P=\mathbf{vM}^2\mathbf v^T=\binom {2(n+3)}{n+3}-2\binom {2(n+3)}2$$
It appears that, for any $m$ for $\color{blue}{q=n-1}$,
$$\begin{align}
P&=\binom {2N}N-2\binom {2N}{N-(n+1)}+2\binom {2N}{N-2(n+1)}+\cdots\\
&=\color{red}{\binom {2N}N-2\binom {2N}{m-2}+2\binom {2N}{m-n-3}-\cdots}\\
&=\color{red}{\binom {2N}N+2\sum_{r=0}^\infty (-1)^r\binom {2N}{N-r(n+1)}}
\end{align}$$
where $N=n+m-1$ and $\binom ab=0$ for $a<b$. This can also be shown by using the reflection principle to count lattice paths on a Pascal triangle truncated on both sides.
If $N=\lambda (n+1)$ where $\lambda>1$ and $\lambda=\underbrace{\mu}_\text{integer part}+\underbrace{\delta}_\text{fractional part}$ then $P$ can be written as
$$\color{red}{P=\sum_{r=0}^{2\mu}\binom {2N}{(\delta+r)(n+1)}(-1)^{r+\mu}}$$
If $\lambda$ is an integer, then $\mu=\lambda, \delta=0$, hence
$$\color{red}{P=\sum_{r=0}^{2\lambda}\binom {2N}{r(n+1)}(-1)^{r+\lambda}}$$
For instance, if $n=3,m=6$, this gives $N=n+m-1=8$ hence
$$\begin{align}
P&=\binom {16}8-2\binom {16}4+2\binom {16}0&&[=9232]\\
&=\sum_{r=0}^4 \binom {16}{4r}(-1)^r\\
&=2\sum_{r=0}^2\binom {16}{8r}-\sum_{r=0}^4\binom {16}{4r}\\
&=2\cdot \frac 18\sum_{r=0}^7 \left(1+e^{i2\pi r/8}\right)^{16}-\frac 14\sum_{r=0}^3\left(1+e^{i2\pi r/4}\right)^{16}\\
&=\frac 14\sum_{r=0}^7 \left[2\left(\cos\frac {\pi r}8\right) e^{i2\pi r/8}\right]^{16}-\frac 14\sum_{r=0}^3 \left[2\left(\cos\frac {\pi r}4\right) e^{i2\pi r/4}\right]^{16}\\
&=\frac {2^{16}}4\sum_{r=0}^7 \left(\cos\frac {\pi r}8\right)^{16}
-\frac {2^{16}}4\sum_{r=0}^3 \left(\cos\frac {\pi r}4\right)^{16}\\
&=\frac {2^{16}}4\left[\sum_{r=0}^7 \left(\cos\frac {\pi r}8\right)^{16}-\sum_{r=0,2,4,6} \left(\cos\frac {\pi r}8\right)^{16}\right]\\
&=2^{14}\sum_{r=1,3,5,7} \left(\cos\frac {\pi r}8\right)^{16}\\
&=2^{14}\sum_{r=1,3} 2\left(\cos\frac {\pi r}8\right)^{16}
&&\left(\cos^2 \left(\frac\pi 8\right)=\frac {2+\sqrt 2}4\right)\\
&=2^{14}\cdot 4\cdot \frac {577}{4096}\\
&=2^4\cdot 577\\
&=9232
\end{align}$$