$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\sum_{\mrm{n} = 0}^{\infty}
{1 \over \mrm{s}^{2} + \pars{1 + 2\mrm{n}}^{2}\omega^{2}} =
{1 \over 4\omega^{2}}\sum_{\mrm{n} = 0}^{\infty}
{1 \over \pars{\mrm{n} + 1/2}^{2} + \mrm{s}^{2}/\pars{4\omega^{2}}}
\\[5mm] = &\
{1 \over 4\omega^{2}}\sum_{\mrm{n} = 0}^{\infty}{1 \over
\bracks{\mrm{n} + 1/2 + \mrm{s}\,\ic\,/\pars{2\omega}}
\bracks{\mrm{n} + 1/2 - \mrm{s}\,\ic\,/\pars{2\omega}}}
\\[5mm] = &\
{1 \over 4\omega^{2}}\,
{\Psi\pars{1/2 + \mrm{s}\,\ic\,/\bracks{2\omega}} -
\Psi\pars{1/2 - \mrm{s}\,\ic\,/\bracks{2\omega}}\over \mrm{s}\,\ic\,/\omega}
\\[5mm] = &\
-\,{\ic \over 4\,\mrm{s}\omega}\,
\bracks{\pi\cot\pars{\pi\bracks{{1 \over 2} - {\mrm{s} \over 2\omega}\,\ic}}} =
-\,{\pi\ic \over 4\,\mrm{s}\omega}\,
\tan\pars{{\pi\,\mrm{s} \over 2\omega}\,\ic}
\\[5mm] & =
-\,{\pi\ic \over 4\,\mrm{s}\omega}\,
\bracks{\ic\tanh\pars{\pi\,\mrm{s} \over 2\omega}}
\\[5mm] = &\
\bbox[15px,#ffe,border:1px dotted navy]{\ds{{\pi \over 4\,\mrm{s}\omega}\,
\tanh\pars{\pi\,\mrm{s} \over 2\omega}}} \\ &
\end{align}
around a circle with radius $R$ in the complex plane (Note that $f(z)\sim 1/z^2$ for large enough $|z|$). I invite to think about this approach
– tired Nov 21 '16 at 13:12