How to prove that this series converges? $\exists\space\text{s}\space\wedge\space\exists\space\omega\in\mathbb{C}$:
$$\sum_{\text{n}=0}^\infty\frac{1}{\text{s}^2+\left(1+2\text{n}\right)^2\omega^2}$$
How to prove that this series converges? $\exists\space\text{s}\space\wedge\space\exists\space\omega\in\mathbb{C}$:
$$\sum_{\text{n}=0}^\infty\frac{1}{\text{s}^2+\left(1+2\text{n}\right)^2\omega^2}$$
Note that we can also calculate the closed form of this series. We have $$\sum_{n\in\mathbb{Z}}\frac{1}{z^{2}+(1+2n)^{2}}=2\sum_{n\geq0}\frac{1}{z^{2}+\left(1+2n\right)^{2}}$$ and now we can use the well known summation formula $$\sum_{n\in\mathbb{Z}}f\left(n\right)=-\sum\left\{ \textrm{residues of }\pi\cot\left(\pi w\right)f\left(w\right)\textrm{ at }f\left(w\right)\textrm{'s poles}\right\} $$ and now since we have poles at $\frac{1}{2}i\left(z\pm i\right) $ we get $$-\textrm{Res}_{w=-\frac{i\left(z-i\right)}{2}}\pi\cot\left(\pi w\right)f\left(w\right)-\textrm{Res}_{w=\frac{i\left(z+i\right)}{2}}\pi\cot\left(\pi w\right)f\left(w\right)=\frac{\pi\tanh\left(\frac{\pi z}{2}\right)}{2z} $$ hence $$\sum_{n\geq0}\frac{1}{z^{2}+\left(1+2n\right)^{2}}=\frac{\pi\tanh\left(\frac{\pi z}{2}\right)}{4z}$$ now taking $z=s/\omega $ we have $$\sum_{n\geq0}\frac{1}{s^{2}+\left(1+2n\right)^{2}\omega^{2}}=\color{green}{\frac{\pi\tanh\left(\frac{\pi s}{2\omega}\right)}{4\omega s}}.$$for $\omega\neq0$ and $s\neq0$.
As $\;s.w\in\Bbb C\;$ , we can write:
$$\left|\frac1{s^2+(1+2n)^2w^2}\right|=\frac1{|s^2+(1+2n)^2w^2|}\le\frac1{(1+2n)^2|w|^2-|s|^2}$$
and since the series with the rightmost general term converges then so does absolutely your series...of course, assuming $\;w\neq0\;$ .
I suppose that $ \omega \ne 0$.
We have
$\frac{1}{\text{s}^2+\left(1+2\text{n}\right)^2\omega^2} \le \frac{1}{4n^2 \omega^2}$.