$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{equation}
\sum_{i = 1}^{k - 1}{\pars{2i}! \over \pars{2^{i}i!}^{2}}\
{\bracks{2\pars{k - i}}! \over \bracks{2^{k - i}\,\pars{k - i}!}^{2}} =
1 - {2\pars{2k}! \over \pars{2^{k}\,k!}^{2}}:\ {\large ?}
\label{1}\tag{1}
\end{equation}
\begin{align}
&\sum_{i = 1}^{k - 1}{\pars{2i}! \over \pars{2^{i}i!}^{2}}\
{\bracks{2\pars{k - i}}! \over \bracks{2^{k - i}\,\pars{k - i}!}^{2}} =
{1 \over 2^{2k}}\sum_{i = 1}^{k - 1}{2i \choose i}{2k - 2i \choose k - i}
\\[5mm] = &\
{1 \over 2^{2k}}\bracks{-{2 \times 0 \choose 0}{2k - 2 \times 0 \choose k - 0} +
\sum_{i = 0}^{k}{2i \choose i}{2k - 2i \choose k - i} -
{2k \choose k}{2k - 2k \choose k - k}}
\\[5mm] = &\
{1 \over 2^{2k}}\sum_{i = 0}^{\color{#f00}{\infty}}{2i \choose i}{2k - 2i \choose k - i} -
{2 \over 2^{2k}}{2k \choose k} =
{1 \over 2^{2k}}\sum_{i = 0}^{\infty}{2i \choose i}{2k - 2i \choose k - i} -
{2\pars{2k}! \over \pars{2^{k}\,k!}^{2}}
\label{2}\tag{2}
\end{align}
From \eqref{1} and \eqref{2}, we see
$\underline{\ the\ proof\ will\ be\ complete\ }$ once we show
\begin{equation}
\sum_{j = 0}^{\infty}{2j \choose j}{2k - 2j \choose k - j} =
\bbx{\ds{2^{2k}}}\label{3}\tag{3}
\end{equation}
Then,
\begin{align}
&\sum_{j = 0}^{\infty}{2j \choose j}{2k - 2j \choose k - j} =
\sum_{j = 0}^{\infty}{-1/2 \choose j}\pars{-4}^{\, j}
{-1/2 \choose k - j}\pars{-4}^{k - j}\label{4}\tag{4}
\end{align}
where we used
a identity from one of my previous answers. \eqref{4} is reduced to:
\begin{align}
&\sum_{j = 0}^{\infty}{2j \choose j}{2k - 2j \choose k - j} =
\pars{-4}^{k}\sum_{j = 0}^{\infty}{-1/2 \choose j}
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-1/2} \over z^{k - j + 1}}\,
{\dd z \over 2\pi\ic}
\\[5mm] = &\
\pars{-4}^{k}\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-1/2} \over z^{k + 1}}
\sum_{j = 0}^{\infty}{-1/2 \choose j}z^{\,j}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\pars{-4}^{k}\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-1/2} \over z^{k + 1}}\,
\pars{1 + z}^{-1/2}\,\,\,{\dd z \over 2\pi\ic} =
\pars{-4}^{k}\
\overbrace{\bracks{z^{k}}\pars{1 \over 1 + z}}^{\ds{\pars{-1}^{k}}}\ =\
\bbx{\ds{2^{2k}}}
\end{align}