It's well known that for symmetric square matrices $A$, the inequality $\textrm{tr}{(A^2)}\leq (\textrm{tr}{A})^2$. I was wondering if there are any nice generalization for higher powers; for example is it true that $\sqrt[m]{\textrm{tr}{(A^m)}}\geq \sqrt[m+1]{\textrm{tr}{(A^{m+1})}}$?
What if the matrix is symmetric so that it has real eigenvalues? What happens when the matrix is nonnegative (so that the Perron Theorem states that the root with the largest magnitude is positive)?
What other nice trace inequalities regarding powers of matrices exist?
Thanks!